I'm trying to complete a Ground State calculation for a 2D polymer that repeats only in 1 dimension (linear polymer chain). I created a nice unit cell in Matlab and Crystal Maker  looks great. I used cif2cell to convert the CIF file into an input.xml file (as I have done for other calculations.) Since I only want a 2D structure, I created a larger Z basis than necessary (about 5 bohr). This is in hopes that the periodicity in the Z direction will place the next cell far enough apart that the atoms in the cell will not feel their presence.
Unfortunately, something is wrong and exciting isn't giving me much in the way of hints.
So here is my INFO.OUT file
[osu6811@oakley01 thpoly]$ cat INFO.OUT
+—+
 Density and potential initialised from atomic data

 version hash id: 8afbd4c3963e94c5e5bd93deefcdf4bc1c2d72bf 
+—+
Date (YYYYMMDD) : 20130907
Time (hh:mm:ss) : 21:04:31
All units are atomic (Hartree, Bohr, etc.)
+—+
 Groundstate run starting from atomic densities 
+—+
Lattice vectors :
13.30400000 0.000000000 0.000000000
0.000000000 14.85430000 0.000000000
0.000000000 0.000000000 4.000000000
Reciprocal lattice vectors :
0.4722779094 0.000000000 0.000000000
0.000000000 0.4229876404 0.000000000
0.000000000 0.000000000 1.570796327
Unit cell volume : 790.4864288
Brillouin zone volume : 0.3137943985
AuDensity and potential initialised from atomic data
rs : 0.2500000000 0.9500000000
Species : 1 (S)
parameters loaded from : S.xml
name : sulphur
nuclear charge : 16.00000000
electronic charge : 16.00000000
atomic mass : 58452.74216
muffintin radius : 1.171800000
number of radial points in muffintin : 399
atomic positions (lattice), magnetic fields (Cartesian) :
1 : 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
2 : 0.28700000 0.49990000 0.00000000 0.00000000 0.00000000 0.00000000
Species : 2 (C)
parameters loaded from : C.xml
name : carbon
nuclear charge : 6.000000000
electronic charge : 6.000000000
atomic mass : 21894.16673
muffintin radius : 1.045500000
number of radial points in muffintin : 299
atomic positions (lattice), magnetic fields (Cartesian) :
1 : 0.16520000 0.16250000 0.00000000 0.00000000 0.00000000 0.00000000
2 : 0.12180000 0.33750000 0.00000000 0.00000000 0.00000000 0.00000000
3 : 0.34780000 0.08960000 0.00000000 0.00000000 0.00000000 0.00000000
4 : 0.93920000 0.41040000 0.00000000 0.00000000 0.00000000 0.00000000
5 : 0.34780000 0.91050000 0.00000000 0.00000000 0.00000000 0.00000000
6 : 0.93920000 0.58950000 0.00000000 0.00000000 0.00000000 0.00000000
7 : 0.16520000 0.83770000 0.00000000 0.00000000 0.00000000 0.00000000
8 : 0.12180000 0.66230000 0.00000000 0.00000000 0.00000000 0.00000000
Species : 3 (H)
parameters loaded from : H.xml
name : hydrogen
nuclear charge : 1.000000000
electronic charge : 1.000000000
atomic mass : 1837.362220
muffintin radius : 0.8986000000
number of radial points in muffintin : 199
atomic positions (lattice), magnetic fields (Cartesian) :
1 : 0.47683333 0.16470000 0.00000000 0.00000000 0.00000000 0.00000000
2 : 0.81016667 0.33530000 0.00000000 0.00000000 0.00000000 0.00000000
3 : 0.47683333 0.83550000 0.00000000 0.00000000 0.00000000 0.00000000
4 : 0.81016667 0.66450000 0.00000000 0.00000000 0.00000000 0.00000000
Total number of atoms per unit cell : 14
Spin treatment :
spinunpolarised
Number of Bravais lattice symmetries : 8
Number of crystal symmetries : 2
kpoint grid : 7 7 2
kpoint offset : 0.000000000 0.000000000 0.000000000
kpoint set is reduced with crystal symmetries
Total number of kpoints : 98
Smallest muffintin radius times maximum G+k : 6.000000000
Species with smallest (or selected) muffintin radius : 3 (H)
Maximum G+k for APW functions : 6.677053194
Maximum G for potential and density : 19.00000000
Polynomial order for pseudocharge density : 9
Gvector grid sizes : 81 90 25
Total number of Gvectors : 91405
Maximum angular momentum used for
APW functions : 10
computing H and O matrix elements : 5
potential and density : 8
inner part of muffintin : 2
Total nuclear charge : 84.00000000
Total core charge : 36.00000000
Total valence charge : 48.00000000
Total excess charge : 0.000000000
Total electronic charge : 84.00000000
Effective Wigner radius, r_s : 1.309711098
Number of empty states : 20
Total number of valence states : 45
Total number of localorbitals : 116
Exchangecorrelation type : 20
PerdewBurkeErnzerhof, Phys. Rev. Lett. 77, 3865 (1996)
Generalised gradient approximation (GGA)
Smearing scheme :
MethfesselPaxton order 1, Phys. Rev. B 40, 3616 (1989)
Smearing width : 0.1000000000E01
Radial integration step length : 2
Density and potential initialised from atomic data
a
Using Multisecant Broyden potential mixing (2)
++
 Selfconsistent loop started 
++
++
 Iteration number : 1 
++
Using advanced method for search of linearization energies
Using Multisecant Broyden potential mixing (2)
++
 Selfconsistent loop started 
++
+—
Using advanced method for search of linearization energies
Using advanced method for search of linearization energies
Using Multisecant Broyden potential mixing (2)
++
 Selfconsistent loop started 
++
++
 Iteration number : 1 
++
Using advanced method for search of linearization energies
Using Multisecant Broyden potential mixing (2)
++
 Selfconsistent loop started 
++
++
 Iteration number : 1 
++
Using advanced method for search of linearization energies
Using advanced method for search of linearization energies
Using advanced method for search of linearization energies
Using advanced method for search of linearization energies
+
 Selfconsistent loop started 
+—+
++
 Iteration number : 1 
++
Using Multisecant Broyden potential mixing (2)
++
 Selfconsistent loop started 
++
++
 Iteration number : 1 
++
Using Multisecant Broyden potential mixing (2)
+— Using Multisecant Broyden potential mixing (2)
++
 Selfconsistent loop started 
++
+—
Using advanced method for search of linearization energie
Using advanced method for search of linearization energies
—+
++
 Iteration number : 1 
++
Using Multisecant Broyden potential mixing (2)
++
 Selfconsistent loop started 
++
++
 Iteration number : 1 
++
Using Multisecant Broyden potential mixing (2)
++
 Selfconsistent loop started 
++
++
 Iteration number : 1 
++
Using advanced method for search of linearization energies
Using advanced method for search of linearization energies
+
 Selfconsistent loop started 
+—+
++
 Iteration number : 1 
++
Using Multisecant Broyden potential mixing (2)
++
 Selfconsistent loop started 
++
++
 Iteration number : 1 
++
Using Multisecant Broyden potential mixing (2)
++
 Selfconsistent loop started 
++
++
 Iteration number : 1 
++
Using Multisecant Broyden potential mixing (2)
++
 Selfconsistent loop started 
++
++
 Iteration number : 1 
+
Using advanced method for search of linearization energies
+
 Selfconsistent loop started 
+—+
++
 Iteration number : 1 
++
Using Multisecant Broyden potential mixing (2)
++
 Selfconsistent loop started 
++
++
 Iteration number : 1 
++
Using advanced method for search of linearization energies
Using Multisecant Broyden potential mixing (2)
++
 Selfconsistent loop started 
++
+—
Using advanced method for search of linearization energies
Using advanced method for search of linearization energies
+
 Selfconsistent loop started 
++
++
 Iteration number : 1 
++
Using advanced method for search of linearization energies
+
 Selfconsistent loop started 
+—+
++
 Iteration number : 1 
++
Using advanced method for search of linearization energies
Using advanced method for search of linearization energies
Using Multisecant Broyden potential mixing (2)
++
 Selfconsistent loop started 
++
+—
Using advanced method for search of linearization energies
Using advanced method for search of linearization energies
Using Multisecant Broyden potential mixing (2)
++
 Selfconsistent loop started 
++
++
 Iteration number : 1 
++
Using advanced method for search of linearization energies
Using Multisecant Broyden potential mixing (2)
++
 Selfconsistent loop started 
++
++
 Iteration number : 1 
++
Using advanced method for search of linearization energies
Using advanced method for search of linearization energies
+
 Selfconsistent loop started 
+—+
++
 Iteration number : 1 
++
Using advanced method for search of linearization energies
[osu6811@oakley01 thpoly]$