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1 Introduction

LayerOptic is a post-processing script, which allows the user to calculate
absorption and reflection coefficients of layered systems from the dielectric
tensors of first-principle calculations. It is applicable to layered systems of
optically anisotropic materials. Although designed for the code exciting, it
can be used to compute these quantities starting from any dielectric tensor.
This enables especially the polarization-dependent analysis of the optical
response of layered material as well as the analysis on beam-angle-dependent
spectra on a length scale inaccesible to first-principle calculations. Writen
in python, it is easily adiustable.

2 Setup

We assume a system of layers stacked in the −z direction. The boundary
between the top layer, which is by default a semi-infinite vacuum layer and
the first layer is at z = 0. Each layer has a finite thickness tn = zn−1 − zn
and the layers are assumed to be asitropic in the xy-plane. The index n runs
between 1 and N , where N is the number of layers with finite thickness.
Additionally we use s to denote the semi-infinite substrate. We write the
total dielectric tensor of the layered system as

ε =



ε(0) z > 0

ε(1) 0 > z > z1

ε(2) z1 > z > z2
...

ε(N) zN−1 > z > zN

ε(s) zN > z

(1)
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In order to perform calculations, a number of parameters have to be cho-
sen. The angle Θ determines the angle of the incoming k-vector with the
z-axis, the incoming beam is always within the zy-plane (plane of incidence).
The angle δ determines the angle of polarization of the incoming light. The
incoming amplitude is always normed to one. δ = 0 corresponds to comple-
tely parallely polarized light, δ = π

2 to completely perpencicularly polarized
light.Additionally for each layer a dielectric tensor ε(n) and a thickness tn
has to be provided. The programm assumes that the top layer (for z > 0) is
vacuum. All quantities are displayed in figure 1.

Abbildung 1: Input parameters needed for calculation.

We also introduce a notation for the four-component vectors A, which
connects each component to a direction of motion (’downwards’ denoting
motion in −z-direction, ’upwards’ in z-direction) and a polarization of the
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electric field (’parallel’ denoting polarization in the zy-plane, ’perpendicular’
in the xz-plane).

A =


A1 ← downwards perpendicular component

A2 ← upwards perpendicular component

A3 ← downwards parallel component

A4 ← upwards perpendicular component

(2)

In each layer, there are always two up- and two downwards moving com-
ponents (characterized by <(kz,σ) > 0 and <(kz,σ) < 0 respectively), but in
ansitropic media the polarization vectors are not necessarily parallel to the
polarization vectors in vacuum. This leads to a arbitrariness in the notion of
’parallel’ or ’perpendicular’ vectors with respect to the plane of incidence.
Since in this algorithm only the electric amplitudes of the vacuum and the
substrate layer are calculated (see Sections 3 and 4), and the substrate is as-
sumed to be isotropic, this does not affect physical results of the calculation.
For a discussion of anisotropic substrate materials see...

3 Theoretical Background

The progagation of electromagnetic plane waves in an anisotropic material
is determined by the Maxwell’s equation in momentum space,

k× (k×E) +
ω2

c2
ε(ω)E = 0 (3)

where k is the wave vector of the wave with frequency ω, c the vacuum light
velocity, E the electric field and ε(ω) is the frequency dependent dielectric
tensor. With fixed components kx and ky, the component kz is determined
by the condition that the determinant of eq. (1) has to vanish. Generally, this
yields four roots kz,σ of the characteristic quartic polynomial for a given ω,
representing the two polarizations for each of the two directions of motion.
We can then write the electric field as

E =

4∑
σ=1

Aσpσ exp [kxx+ kyy + kz,σz − ωt] (4)

with the polarizations pσ and the amplitudes Aσ. The polarizations are
obtained as the eigenvectors to the eigenvalue zero of eq. (1) for the corre-
sponding kz,σ. The corresponding magnetic field vector H is obtained as

H =
1

µ0c
k×E (5)
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Transmission and reflection coefficients are then obtained by using the boun-
dary conditions of parallel components the electric field Ex and Ey, and
magnetic field Hx and Hy at the layer boundaries. At the interface z = zn−1
this yields the matrix equation for the electric amplitudes

A1(n− 1)
A2(n− 1)
A3(n− 1)
A4(n− 1)

 = D−1(n− 1)D(n)P(n)


A1(n)
A2(n)
A3(n)
A4(n)


(6)

where D(n) and P(n) are 4 × 4 matrices. The matrix D(n) is formed by
the electric and magnetic polarization vectors pσ(n) and qσ(n), while the
matrix P(n) is formed directly from the kz,σ-component:

D(n) =


px,1(n) px,2(n) px,3(n) px,4(n)
qy,1(n) qy,2(n) qy,3(n) qy,4(n)
py,1(n) py,2(n) py,3(n) py,4(n)
qx,1(n) qx,2(n) qx,3(n) qx,4(n)

 (7)

P(n) =


exp(ikz,1(n)tn) 0 0 0

0 exp(ikz,2(n)tn) 0 0
0 0 exp(ikz,3(n)tn) 0
0 0 0 exp(ikz,4(n)tn)


(8)

These relations between electric fields at each layer boundary can now be
used to connect the amplitudes of the electric fields in the vacuum layer and
the substrate:

A(0) = D−1(0)D(1)P(1)D−1(2)P(1) . . .D−1(N)D(s)A(s) (9)

A(0) = D−1(0)T(1)T(2) . . .T(N − 1)T(N)D(s)︸ ︷︷ ︸
=T

A(s)

In the second line of equation (8), we have expressed the total transfer matrix
T as a product of single-layer transfer matrices T(n)

T(n) = D(n)P(n)D−1(n) (10)
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Using the matrix equations shown above, the amplitudes A(0) and A(s) can
be calculated under the condition that four values of the amplitudes have
to be fixed. In order to calculate Fresnel coefficients for the light intensity,
the Poynting vector in the substrate has to be calculated. For an isotropic
substrate, the time-averaged Poynting vector < S > is obtained as

< Sσ >=
1

2
|pσ × qσ| =

|Aσ|2

ωµ0
|pσ × (kσ × pσ)| (11)

This yields the transmission coefficient T as

T =
< |Ssubstrate| >
< |Svacuum| >

= cµ0|A|2|p× q| (12)

4 Implementation

4.1 Calculation of Fresnel Coefficients

For each layer of the system, the roots of the characteristic polynomial of
eq. (3) are calculated, yielding the wavevector components kz,σ(n). For each
of these four components, the matrix in eq. (3) is constructed and the cor-
responding polarization vector pσ is obtained as the eigenvector to the ei-
genvalue zero. From the electric polarization, the corresponding magnetic
polarization qσ is calculated. These quantities then allow to determine the
layer transfer matrix T (n) (see eq. (10)). Following a loop over all layers,
the quantities D−1(0) and D(s) are calculated. With these the full transfer
matrix T can be calculated, as shown in eq. (9).
Since the components A1(0) and A3(0) are fixed as parameters and A2(s) =
A4(s) = 0, as no light is emitted from z = −∞, the remaining components,
representing the reflected light in the vacuum and the transmissed light in
the substrate, are calculated from eq. (9).
In a last step, the transmission coefficient is calculated from eq. (12), where
the parallel component Tp and the perpendicular component Ts are obtained
as

Tp = cµ0|A3(s)|2|p3(s)× q3(s)| Ts = cµ0|A1(s)|2|p1(s)× q1(s)| (13)

and the components of the reflection coefficient R are obtained as

Rp = |A4(0)|2 Rs = |A2(0)|2 (14)
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4.2 Rotation of Dielectric Tensors

Dielectric tensors of each layer can be rotated independently before calcu-
lating the Fresnel coefficient. Rotations are implemented using Euler angles
α,β and γ and the Z1X2Z3-rotation matrix. Using the standard notations

s1 = sinα c1 = cosα s2 = sinβ c2 = cosβ s3 = sin γ c3 = cos γ

the rotation matrix is

R = Z1X2Z3 =

 c1c3− c2s1s3 −c1s3− c2c3s1 s1s2
c3s1 + c1c2s3 c1c2c3− s1s3 −c1s2

s2s3 c3s2 c2

 (15)

and rotations of the dielecric tensor are performed by

ε′ = RεR−1 (16)

5 Usage

The algorithm contains two independent python scripts, LO-setup.py and
LO-execute.py.
LO-setup.py transforms exciting dielectric tensor output into input files
for the calculation of a layered system. The script is called with four para-
meters representing the three Euler angles in degrees and the layer number
the dielectric tensor is used for. Note that the first three parameters are
floats, while the third has to be an integer. An example usage is

$ . /LO−setup . py 40 . 20 . 0 . 2

In this example α = 40◦, β = 20◦ and γ = 0◦, and the dielectric tensor is
used for the second layer.
The script assumes that the folder contains at least one file which contains
the dielectric tensor from an exciting calculation. The files are assumed
to have names in the form EPSILON XX OCij.OUT, where XX is a
descriptor given by the exciting calculation and ij is the component of the
dielectric tensor.
All components of the dielectric tensor that are not saved in files in the
directory, in which the script is executed, are set to zero. This allows for
example a calculation with only the diagonal terms of the dielectric tensor.
The script outputs a number of files labeled n ij.out, where n is the layer
number and ij denotes the component of the dielectric function. These files
contain the real and imaginary part of the dielectric component for each

6



frequency point. The script uses the calculated real part of the dielectric
tensor, not the one obtained from the Kramers-Kroning-relation.
LO-execute.py executes the calculation of Fresnel coefficients for a layered
system. The script is called without parameters. It displays an interactive
menu, that asks you to set parameters. The script expects that for each
layer, the files n ij.out files generated by LO-setup.py are stored in the
directory the script is executed in.
The output contains three files: reflection.out, transmission.out and ab-
sorbance.out. Each of this files contains the values for parallely and per-
pendicularly polarized light for each frequency point. The frequency is given
in eV , all other quantities are dimensionless.As a example, the following
shows the structure of reflection.out:

ω1[eV ] Rperpendicular(ω1) Rparallel(ω1)
ω2[eV ] Rperpendicular(ω2) Rparallel(ω2)

...

(17)

In all output files the first column contains the frequency, the second column
the perpendicular part of the quantity of interest, the third the parallel part.
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