
Towards Exascale LAPW
SIRIUS integration in

Alexander Buccheri. MPSD, Hamburg.
5th August 2023. HU, Berlin

Overview

• Part 1

• Basics of Scaling with LAPW

• Introduction to SIRIUS

• Integration with exciting

• Part 2

• Benchmark 1

• Benchmark 2

• Current Bottlenecks in the implementation

Fundamentals of LAPW

• Basis: Linearised augmented plane waves

• Most precise numerical scheme/basis for solving KS
equations in DFT

• All electrons/no pseudo-potentials

• No shape approximation to the potential

• Numerous flavours and approximations in basis and
potential.

• Expensive

[1]. Karlheinz Schwarz. https://www.bc.edu/content/dam/bc1/schools/mcas/physics/pdf/wien2k/DFT%20and%20APW.pdf
[2]. https://elk.sourceforge.io/

SrTiO

Full potential

Muffin tins with
constant

interstitial potential

Fig 1. Potential and basis in an LAPW calculation. [1, 2]

LAPW basis

Most Expensive Part of a Ground State Calculation

• Hamiltonian setup (H, S)

• Separate terms for interstitial and muffin-tin regions

• Solving the secular equation

HIR + HMT SIR + SMT

1 10 100
number of processors

1

10

100

s
p

e
e

d
−

u
p

98.6% of the code are parallel

2 4 8 16
number of processors

100

200

300

400

500

600

m
e
m

o
ry

 [
M

b
y
te

]

2

4

8

16

s
p
e
e
d
−

u
p

potential

Hamilto
n setup

diagnonalization

charge density total
0

20

40

60

80

100

120

140

160

180

ru
n
 t
im

e
 [
m

in
.]

repeated slab
true film
inversion symmetry
z−reflection symmetry

Figure 14. Left: Breakup of the computing time for a calculation of the p() Cu(110) film. The run-times are
given for a repeated slab model, a true film calculation, and the latter with making use of inversion and z-reflection
symmetry. The total time of 178 min. per self-consistency cycle should be compared to 174 min. obtained with
the optimized WIEN code80 at the same computer using standard diagonalization and otherwise similar cutoff
parameters. Middle: Speed-up from the parallelization over the -points for a 9-layer film of Fe(100) with 196
-points. Right: Speed-up and memory requirements due to eigenvector parallelization tested on a 9-layer film
of p() Cu(110) with a single -point on a Cray T3E. The memory requirements for the calculation with two
processors was extrapolated and a similar value was also found for the unparallelized calculation.

Hamiltonian as well as in the charge density setup. If two equivalent atoms and are
connected by inversion symmetry, then and therefore it is easily verified from
Eq. (132) that . This simple relation helps to speed-up both
the matrix setups and the charge density generation. In our specific example 44% of the
coefficients can be constructed in this way. The actual speed-up gained from this procedure
can be seen in the chart of Figure 14.

A film with a mirror plane perpendicular to its surface normal (which shall point in
z-direction), i.e. z-reflection symmetry, allows the use of symmetrized basis functions31:

(133)

where . Here we exploit the fact, that in film calculations . There-
fore, not only the density and potential, but also the basis functions have z-reflection sym-
metry. This enables a block diagonalization of the eigenvalue problem, decomposing the
Hamilton- and overlap matrix into symmetric and antisymmetric blocks. Apart from a
small overhead – resulting from sorting the eigenvectors – we expect a speed-up of a factor
4 for a scaling diagonalization routine. From the chart in Figure 14 one finds that
this value is almost obtained. In summary, we gained a speed-up of more than a factor 2.5
as compared to a repeated slab calculation where these symmetries were neglected.

Using the same concept for one-dimensional systems, compared to the conventional
FLAPW formulation, the 1D-method can be 150 times faster than the supercell approach,
and the Hamiltonian construction and the diagonalization part of the 1D code even 270
times faster than that of the bulk super-cell code46. As compared to the supercell approach
using the film geometry, per self-consistency iteration the 1D-method is then 15 times
faster, and the Hamiltonian construction and the diagonalization part of the 1D code is 25
times faster than that of the film super-cell code.

39

molecular dynamics and simulated annealing. Therefore, everything said in this chapter on
structural optimization applies to both, the atomic and the magnetic structure. Throughout
the paper, the spin label is dropped for convenience. More information on the treatment
of magnetism can be found in the chapter “Non-collinear magnetism: exchange parameter
and T ” by G. Bihlmayer.

2.4 The Eigenvalue Problem

In all-electron methods, eigenvalue problem Eq. (7) is solved for all occupied states but
typically subject to different boundary conditions. As shown schematically in Figure 3 we
distinguish core electrons from valence electrons. The former have eigenenergies which
are at least a couple of Rydbergs below the Fermi energy, the potential they experience
is to an excellent approximation spherically symmetric and the wavefunctions have no
overlap to neighboring atoms. The eigenvalue problem of these states is solved applying
the boundary conditions of isolated atoms, which is numerically tackled by a shooting
method. Valence electrons in a crystalline solid form electron bands and the eigenvalue
problem is solved subject to the Bloch boundary conditions. The eigenstate is classified by
the band index and a three-dimensional Bloch vector within the first Brillouin zone,
(). Some materials contain chemical elements with states (e.g. states of
elements or W, states of early transition metals) intermediate between band and core
states and those are coined semicore states. These are high-lying and extended core states
and particular care has to be taken on their treatment since their treatment as core states
can cause significant errors in total energy, force and phonon calculations. According to
the different treatment of the electrons, we decompose the charge density in the valence,
semicore and core densities

(12)

the latter being spherically symmetric. The charge densities are calculated according to
Eq. (1). Wavefunctions and energies of core states give access to hyperfine quantities such
as isomer shifts, hyperfine fields and electric field gradient as well as chemical shifts of
core levels.

There are many possible ways to solve the Kohn-Sham equations for valence electrons.
Frequently, a variational method is chosen by which a wavefunction of Bloch vec-
tor and band index is sought as a linear combination of basis functions

(13)

satisfying the Bloch boundary conditions. are the expansion coefficients of the wave-
function (coefficient vector), and is the number of basis functions taken into account.
By this expansion, the eigenvalue problem

(14)

is translated into an algebraic eigenvalue problem of dimension

BZ (15)

7

[H(k) − ϵkνS(k)] ckν = 0
Fig1. Most time-consuming parts of an LAPW
calculation on a p(4x2) Cu(110) slab, in 2006 [1].

1. S Blugel and G Bihlmayer. John von Neumann Institute for Computing, Julich, NIC Series, Vol. 31, ISBN 3-00-017350-1, pp. 85-129, 2006.

Most Expensive Part of a Ground State Calculation

HG′ G
MT (k) = ∑

μ
∑
L′ L

(aμG′

L′
(k))

*
tαϕϕ
L′ L aμG

L (k) + (bμG′

L′
(k))

*
tα ·ϕ ·ϕ
L′ L bμG

L (k)

+(aμG′

L′
(k))

*
tαϕ ·ϕ
L′ L bμG

L (k) + (bμG′

L′
(k))

*
tα ·ϕϕ
L′ L aμG

L (k)

Precomputed integralstαϕϕ
L′ L

aμG
L (k), bμG

L (k) Matching coefficients

L. Index over radial basis functions

G, G' reciprocal lattice vectors

Terms

atomic, species indicesμ, α

Scaling

Muffin Tin

prefactor * Natoms * N2
G+k

≡ prefactor * N3
atoms

NG+k number of PWs with ≤ |G + k |

Most Expensive Part of a Ground State Calculation

Step functionΘ(G−G′)
Crystal potential Fourier coefficients

G, G' reciprocal lattice vectors

Terms

Scaling

Interstitial

HGG′

I (k) = (VΘ)(G−G′) +
ℏ2

2m (G′ + k)2 Θ(G−G′)
V(G)

NG+k ln NG+k (VΘ)(G−G′)assuming use of FFT to compute

NG+k number of PWs with ≤ |G + k |

SIRIUS Library
SIRIUS is a high-level domain-specific GPU accelerated PW and LAPW DFT library.

It is organised as a collection of C++ classes that abstract away the main
components of PW and LAPW codes:
• Density and Potential
• Mixer
• Kohn-Sham Eigen-solver
• Symmetrization
• Stress and Forces

The library is written in C++14 with MPI, OpenMP and CUDA/ROCm programming
models.

https://github.com/electronic-structure/SIRIUS
https://electronic-structure.github.io/SIRIUS-doc/

Sirius Dependencies

SIRIUS domain specific library
LAPW / PW implementation in C++

ELPA

ScaLAPACK
PBLAS

LAPACK
BLAS

spglib

GSL

HDF5

libvdwxc

LibXC

MAGMA

SpFFT SPLA

FFTW

CUDA
cuBlas

cuSolver
cuFFT
ELPA

ROCm
rocBLAS
rocFFT

NLCGLIB

Use to manage the dependencies

spack install sirius@develop %gcc@9.3.0
build_type=Release +scalapack +fortran +tests ^spla ^intel-
mkl threads=openmp ^mpich@3.3.2 ^spfft+single_precision

==> Installing sirius-develop-
vhzi64vzqgvkcoinfp6sfilsirk34avd
==> No binary for sirius-develop-
vhzi64vzqgvkcoinfp6sfilsirk34avd found: installing from
source
==> No patches needed for sirius
==> sirius: Executing phase: 'cmake'
==> sirius: Executing phase: 'build'
==> sirius: Executing phase: 'install'
==> sirius: Successfully installed sirius-develop-
vhzi64vzqgvkcoinfp6sfilsirk34avd

 Fetch: 5.45s. Build: 2m 11.94s. Total: 2m 17.39s.
[+] /home/ubuntu/src/spack/opt/spack/linux-ubuntu20.04-
haswell/gcc-9.3.0/sirius-develop-
vhzi64vzqgvkcoinfp6sfilsirk34avd

• CPU kernels and support libs
• GPU Kernels
• Problem-specific interface layers to CPU/GPU kernels

Supported Functionality

▪NC/US/PAW pseudopotentials

▪L(A)PW+lo basis with arbitrary number of local orbitals

▪Collinear and non-collinear magnetism

▪L(S)DA and GGA functionals from LibXC

▪Spin-orbit coupling

▪Stress tensor (PP-PW only)

▪Atomic forces

▪ Iterative Davidson and exact diagonalization solvers (for both PP-PW and FP-LAPW methods)

▪Orbital transformation (wave-function optimisation) method (nlcglib library, PP-PW only)

Interoperability with the host code (high level overview)

SIRIUS Setup Phase
Create, set and initialize Simulation_context instance

• set lattice vectors, atom types and atomic positions
• set pseudopotential or LAPW basis description
• set plane-wave cutoffs and other simulation parameters
• set XC potential type

Create and initialize K_point_set instance
Create and initialize DFT_ground_state instance

SIRIUS Execution Phase
Run DFT_ground_state and compute total energy, stress and
forces components

SIRIUS Update Phase
Update lattice vectors and atomic positions and recompute
dependent variables

Host code interacts with SIRIUS via API
(C and Fortran90 bindings are provided)

Example:
! create context of simulation
CALL sirius_create_context(intra_image_comm, sctx,&
 &fcomm_k=inter_pool_comm,&
 &fcomm_band=intra_pool_comm, error_code=ierr)

IF (ierr .NE. 0) THEN
 STOP 'error in sirius_create_context()'
END IF

Once the simulation parameters are set up, host code calls SIRIUS to
find the ground state and get back total energy, lattice stress and
atomic forces.

Host code performs the lattice relaxation step and finds new lattice
parameters and atomic positions.

Integration with exciting

Initialisation

Construct G-vectors (distributed)Build/integrate radial functions

LAPW Basis LAPW Basis replica

(Distributed)

SCF Vxc + VHa VHa

Radial integrals
Construct (H, S) &

Solve secular eq’

Band energies

Un-symmetrised density

Band Occ’s

Symmetrised density

Initialisation

</input>
 <STRUCTURE>
 ...
 <groundstate
 do="fromscratch"
 rgkmax="8.0"
 ngridk="4 4 4"
 xctype="GGA_PBE_SOL"
 epsengy="1e-07"
 gmaxvr="16.0"
 deband="0.001"
 maxscl="30">
 <sirius xc="false"
 vha="true"
 eigenstates="true"
 density="true"
 densityinit="false"
 cfun="true">
 </sirius>
 </groundstate>
</input>

2. + SIRIUS Initial Benchmarks

Initial Benchmarks Zr4Y4O14

 Maximum Hamiltonian
size 6844

 Maximum number of
plane-waves 4184

 Total number of local-
orbitals 2660

Initial Benchmarks

 Maximum
Hamiltonian size 29563

 Maximum number
of plane-waves 28371

 Total number of
local-orbitals 1192

C32H96N8Pb4I16

Initial Benchmarks

* A proper benchmark has to be done on the same machine with and without GPU support.

• The comparison is illustrative not
quantitative*

• Does not account for differences in:

• Choice of resources

• CPU spec (power)

• Resource assignment effect on
performance.

• Plot "time * total CPU cores used"

Code Nodes
ranks

per

node

threads

per

node
GPU Time

SIRIUS
+

exciting
64 1 12 Yes 2 hours

exciting 4 1 16 No 72
hours

Current Bottlenecks

• Large arrays not distributed in exciting:

• Spherical harmonics expanded in G:

• Structure factor:

• Structure factor scales as

• For 200+ atoms, these can easily exceed 1 GB each, limiting number of MPI
processes per node.

N2
atoms

ei(G+k)⋅τα

Ylm(̂G + k)

How do you try out + SIRIUS?

• In the code since exciting Fluorine

• Build Process

• : Build sirius dependencies

• : Build sirius

• make.inc Build exciting, linking to sirius

• Provide a dockerfile for building all
dependencies, which we use in our own CI

• $excitingroot/build/utilities/docker/

Acknowledgements

• Cecilia Vona

• Provided the perovskite system for benchmarking

• Anton Kozhevnikov (CSCS)

• Lead developer of Sirius

• Andris Gulans

• General support with exciting and LAPW

• Claudia Draxl

• SOL Group Leader and NOMAD Coordinator

