lTowards Exascale LAPW

SIRIUS integration In ex@ing

y
Alexander Buccheri. MPSD, Hamburg.
b5th August 2023. HU, Berlin

Overview

- Part 1

Basics of Scaling with LAPW

- Introduction to SIRIUS
- Integration with

- Part 2

Benchmark 1

SBenchmark 2

+ Current Bottlenecks in the implementation

Fundamentals ot LAPW

Basis: Linearised augmented plane waves

SrTio

Most precise numerical scheme/basis for solving KS

equations in DFT Full potential

All electrons/no pseudo-potentials - .
Muffin tins with

| o constant
No shape approximation to the potential Nl R interstitial potential

- Numerous flavours and approximations in basis and)

potential. , @ ﬂ (LAPW basis
i

Fig 1. Potential and basis in an LAPW calculation. [1, 2]

—Xpensive

[1]. Karlheinz Schwarz. https://www.bc.edu/content/dam/bc1/schools/mcas/physics/pdf/wien2k/DFT%20and%20APW.pdf
[2]. https://elk.sourceforge.io/

Most Expensive Part of a Ground State Calculation

Hamiltonian setup (H, S)

Separate terms for interstitial and muffin-tin regions z

£.100 -

Hip + Hyr Sip + Syr
Solving the secular equation

H(K) — ¢,,S(k)| ¢, =0 Vk € BZ

1. S Blugel and G Bihlmayer. John von Neumann Institute for Computing, Julich, NIC Series, Vol. 31, ISBN 3-00-017350-1, pp. 85-129, 2006.

run time

180

160

140

repeated slab

true film

iInversion symmetry
z—reflection symmetry

80 -

60 -
40 -

20 -

0

Figl. Most time-consuming parts of an LAPW
calculation on a p(4x2) Cu(110) slab, in 2006 [1].

Most Expensive Part of a Ground State Calculation

Mutfin Tin Terms
HG G(k) — Z Z (CZ’MG (k)) aqbqﬁa,uG(k) + <b,uG (k)) agb¢bﬂG(k) loj’?¢ DreCOmpUted iﬂtegrals
L'L
" } a'(k),b**(k) Matching coefficients

(MG (k)) (“1PBG (k) + (b”G (k)) (291G (k)
[. Index over radial basis functions

Scaling G, G' reciprocal lattice vectors

U, @ atomic, species Indices
orefactor * N

atoms

% A2
NG+k

NG+x number of PWs with < |G + k]|
= prefactor * N3

atroms

Most Expensive Part of a Ground State Calculation

Interstitial lerms

, H2
Hy® (K) = (VO)(g_¢) + 75— (G'+ k)2 O (G-c)

Im O (G- Step function

V(G) Crystal potential Fourier coefficients

G, G' reciprocal lattice vectors

Scaling

NG+kx number of PWs with < |G + k]|

N In N,y @ssuming use of FFT to compute (V@)(G_G,)

SIRIUS Library

SIRIUS is a high-level domain-specific GPU accelerated PW and LAPW DFT library.

It is organised as a collection of C++ classes that abstract away the main
components of PW and LAPW codes:

- Density and Potential

Mixer

Kohn-Sham Eigen-solver

Symmetrization

Stress and Forces

The library is written in C++14 with MPI, OpenMP and CUDA/ROCm programming
models.

nttps://github.com/electronic-structure/SIRIUS

nttps://electronic-structure.qithub.io/SIRIUS-doc/

O https://github.com/electronic-structure/SIRIUS

[LICENSE

[README.md

[check_format.py
[check_format.x

[clang_format.x

[prerequisite.py

O README.md

release v6.5.4 | docs doxygen | license BSD | () Build pang

Table of contents

¢ Introduction

¢ |nstallation
o Minimal installation

o Install with Spack

o Adding GPU support
o Parallel eigensolvers
o Python module

o Additional options

o Archlinux

tes

Create LICENSE

update front page documentation

t travis CI

check travis
use sh

fixes to the install script

SIRIUS

o Installation on Piz Daint

e Accelerating DFT codes

o Quantum ESPRESSO

e Contacts

e Acknowledgements

Introduction

onths a

SIRIUS is a domain specific library for electronic structure calculations. It implements pseudopotential plane wave (PP-PW)

and full potential linearized augmented plane wave (FP-LAPW) methods and is designed for GPU acceleration of popular
community codes such as Exciting, Elk and Quantum ESPRESSO. SIRIUS is written in C++11 with MPI, OpenMP and

CUDA/ROCm programming models. SIRIUS is organised as a collection of classes that abstract away the different building
blocks of DFT self-consistency cycle.

The following functionality is currently implemented in SIRIUS:

e (PP-PW) Norm-conserving, ultrasoft and PAW pseudopotentials

e (DD_DW) Snin-orhit con

inliney

onths ago

onths ago

onths ago

)]
«Q «Q «Q «Q «Q «Q
(o] (o]

onths ago

Sirius Dependencies

Use@ Spack to manage the dependencies

spack install sirius @develop %gcc@9.3.0
build_type=Release +scalapack +fortran +tests “‘spla intel-
mkl threads=openmp "mpich@3.3.2 "spfft+single_precision

4 N (0 N (0)
ELPA spglib | | libvdwxc

==> Installing sirius-develop-
vhzi64vzqgvkcoinfp6sfilsirk34avd

==> No binary for sirius-develop-
vhzi64vzqgvkcoinfp6sfilsirk34avd found: installing from
source

==> No patches needed for sirius

==> sirius: Executing phase: ‘cmake'

==> sirius: Executing phase: 'build’

==> Sirius: Executing phase: 'install’

==> sirius: Successfully installed sirius-develop-
vhzi64vzqgvkcoinfp6sfilsirk34avd

. J
e)

N\
AN
N\
AN

ScaLAPACK

PBLAS GSL

N\
L
N\
L

LAPACK

BLAS HDF5

N\
L

N

MAGMA FFTW
& VAN J

Fetch: 5.45s. Build: 2m 11.94s. Total: 2m 17.39s.
[+] /home/ubuntu/src/spack/opt/spack/linux-ubuntu20.04-
haswell/gcc-9.3.0/sirius-develop-
vhzi64vzqgvkcoinfp6sfilsirk34avd

CPU kernels and support libs f \\
GPU Kernels ‘

Problem-specific interface layers to CPU/GPU kernels M p S d

Supported Functionality

= NC/US/

PAW pseudopotentials

= | (A)PW+lo basis with arbitrary number of local orbitals

= Collinear and non-collinear magnetism

= | (S)DA and GGA functionals from LibXC

= Spin-orbit coupling

= Stress tensor (PP-PW only)

= Atomic forces

= [terative

Davidson and exact diagonalization solvers (for both

D

D,

AW and

= Orpital transformation (wave-function optimisation) method (nlcglib library,

P-LAPW methods)

OP-PW only)

Interoperability with the host code (high level overview)

Host code interacts with SIRIUS via API
(C and Fortran90 bindings are provided)

Example:

! create context of simulation

CALL sirius create context(intra image comm, sctx, &
&§fcomm k=inter pool comm, &
&§fcomm band=intra pool comm, error code=ierr)

IF (ierr .NE. 0) THEN
STOP 'error 1in sirius create context()'
END IF

Once the simulation parameters are set up, host code calls SIRIUS to
find the ground state and get back total energy, lattice stress and
atomic forces.

Host code performs the lattice relaxation step and finds new lattice
parameters and atomic positions.

f SIRIUS Setup Phase
Create, set and initialize Simulation_context instance
» set lattice vectors, atom types and atomic positions
* set pseudopotential or LAPW basis description
* set plane-wave cutoffs and other simulation parameters
 set XC potential type
Create and initialize K_point_set instance

Create and initialize DFT_ground_state instance

_

a SIRIUS Execution Phase
Run DFT_ground_state and compute total energy, stress and

J
R

Qorces components)

4 SIRIUS Update Phase N
Update lattice vectors and atomic positions and recompute

erendent variables J

Integration with

‘I-IIIIIIIIIIIIIIIIIIIIIIII.

SIRIUS

*

</Input>
<STRUCTURE>

—
-
Q

<groundstate
do="fromscratch"
rgkmax="8.0"
ngridk="4 4 4"
xctype="GGA_PBE_SOL"
epsengy="1e-0/"
gmaxvr="16.0"

Initialisation Initialisation

Build/integrate radial functions Construct G-vectors (distributed)

LAPW Basis replica

E BB A B E EEEEEEMEEEEEEEEEEEENYN
EEEEEEEEEEEEEEEEEEEEEEEEENETSR

LAPW Basis . deband="0.001"
(Distributed) MAxscl="30">

.‘Illlllllllllllllllllll.‘ ..‘Illlllllllllllllllllll.‘. <SII’|USXC="fa|Se"
* SCF Vxc+VHa . VHa + vha="true"
| - I .: ' .t .t :Il.t 1
. v . "u Construct (H, S) & o N f,,es Jue
- Radial integrals - b Solve secular ea’ - density="true
- - " . 9 "u densityinit="false"
- . " v | .. cfun="true">
. Band Occ’s . =n Band energies m- </sifius>
- \ - % Un-symmetrised density "= </grounastate>
- - " =L </input>
- Symmetrised density . 4—-:—* .

| Nn
’.llllllllllllllllllllll’ -”..llllllllllllllllllllll:’.

2. ex@ing + SIRIUS Initial Benchmarks

nitial Benchmarks Zr,Y,0, 4

Timings. Y-doped ZrO2 (22 atoms) Maximum Hamiltonian o,
100 size
100 i y _
B exciting+sirius Maximum number of 4184
plane-waves
80 Total numl:_)er of local- 5660
orbitals
X 60
),
S
— 40
20 12
0 .
Hamiltonian Radlal Solver Total
Construction Integration (CuBLAS)

Initial Benchmarks Cy,HocNgPb,1

Timings. BA2Pbl4 (156 atoms)

100
100
B exciting+sirius Maximum
. . . 29563
Hamiltonian size
30
o
S 60 |
Maximum number
Q 28371
= of plane-waves
= 40
20
Total numl_oer of 1199
5 local-orbitals
0 [l m

Hamiltonian Radial Solver Total
Construction Integration (ELPA)

mpsd

INnitial Benchmarks

The comparison is illustrative not

quantitative*

Does not account for differences In:

Choice of resources

CPU spec (power)

Resource assignment effect on

performance.

Plot "time * total C

Pl cores used"”

Time (arb)

=L N W B U
o O o o O

o

Comparative Time
75

BA2PDbl4
(156 atoms)

Code | Nodes

SIRIUS

+
exciting

exciting

64

4

B sirius+exciting
e pure exciting

ranks |threads

1 12

Yes 2 hours

72
hours

* A proper benchmark has to be done on the same machine with and without GPU support.

Mmpsad ‘\\

Current Bottlenecks

L arge arrays not distributed In

A

- Spherical harmonics expanded in G: Y}, (G + K)

. Structure factor: e (6K 7

p)
+ Structure factor scalesas N7,

For 200+ atoms, these can easily exceed 1 GB each, limiting number of MPI
processes per node.

How do you try out ex

ing+ SIRIUS?

)
- |n the code since Fluorine

. Build sirius dependencies

: Build sirius

+make.inc Build exciting, linking to sirius

- Provide a dockertile for building all
dependencies, which we use in our own Cl

$excitingroot/build/utilities/docker/

Dockerfile for exciting plus Sirius dependencies. Anton Kozhevnikov [8 weeks ago] * Fix to Sirius API function:

#

#

% Build (from directory containing Dockerfile, else replace . with path/2/Dockerfile)
docker build -t sirius-cpu:develop-may2023 .
#
#
#

* Run natively
docker run =--entrypoint bash =it sirius-cpu:develop-may2023
FROM ubuntu:focal

ENV DEBIAN_FRONTEND noninteractive

Lowest-level Build Dependencies

RUN \

apt-get update && \

apt-get install -y apt-utils gcc g++ gfortran git make unzip \
wget pkg-config python3-pip curl tcl m4 cpio hwloc automake \
xsltproc Llibomp-dev

Library dependencies which are slow to build with spack
RUN apt-get update && apt-get install -y mpich libhdf5-cpp-103 libhdf5-mpich-103 libhdf5-mpich-dev libxc-dev

RUN pip install cmake==3.24.1

Install spack
RUN git clone -c feature.manyFiles=true https://github.com/spack/spack.git

RUN echo "source /spack/share/spack/setup-env.sh" >> /fetc/profile.d/spack.sh
SHELL ["/bin/bash", "--=login", "-c"]

RUN /spack/bin/spack compiler find
RUN /spack/bin/spack external find

Sirius build specification, at commit: 38988070cda27727798927T079803875d4835d117
ENV SPEC="sirius@develop %0gcc@9.4.0 build_type=Release +scalapack +fortran “mpich@3.3.2 “intel-oneapi-mkl+cluster “spfft target=x86_64"

Install sirius dependencies
RUN /spack/bin/spack install --fresh --only=dependencies $SPEC

Sirius installation location
ENV SIRIUS_ROOT=spack=-sirius-=install

Location of sirius env “spack.yaml’
ENV SIRIUS_ENV=spack-sirius-env

Create an environment
RUN /spack/bin/spack env create —-with-view $SIRIUS_ROOT $SIRIUS_ENV
RUN /spack/bin/spack -e $SIRIUS_ENV add $SPEC

exciting test suite dependencies
RUN apt-get update && apt-get install -y python3.8-full python3.8-venv
RUN pip install termcolor lxml pytest pyyaml pytest-cov xmlschema

Acknowledgements

Anton Kozhevnikov (CSCS)

Lead developer of Sirius

Andris Gulans

General support with exciting and LAPW

@9
NOVEL MATERIALS DISCOVERY

| e o SRR T "
T Cecllia Vona
. - Provided the perovskite system for benchmarking
Claudia Draxi

. \
SOL Group Leader and NOMAD Coordinator mp o .

