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Outline

General ML
ML in electronic structure

ML to make density functionals
— Orbital-free DFT
— XC energy for strong correlation

The future

A. What is machine learning? \

Unholy alliance of computer science, math, and
statistics.

Initial excitement in 1990’s with first neural
networks (NN's), inspired by brain architecture

Computing power and data acquisition lead to
revolution about 2010

Last 5 years, increasingly dominated by neural
networks (deep learning)

ML=applied statistics + non-linearity + GPUs
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Challenges for physical scientists

ML designed for generic real-world data, much
involving human caprice.

Physical science governed by underlying
physical laws (eg laws of thermodynamics)

Fits that disobey such laws are obviously junk.

Scientists have lots of prior knowledge and
intuition that is very difficult to categorize.

General purpose ML algorithms can easily give
nonsense

KAIST3:ML in
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More challenges

+ Computer science is NOT physical science.

+ Publication in computer science is very different,
because the standards are very different.

+ Because of enthusiasm for ML, lots of papers
appearing in chemistry and materials.

* More than %2 do not meet basic quality standards
for reproducibility, test selection, etc.

* 90% are likely to prove worthless (true of all good
research).

+ But 10% are first papers ever doing something

My qualifications

+ Pioneered using ML for finding functionals
(2012), with Klaus Robert-Mueller

+ | teach ML for physical sciences for last 4 years
+ Just gave 4-hour lecture series to all Korea
+ ML is a paradigm shift in modelling

* If you're a current graduate student, you'd be
crazy not to learn/do a little ML

* My ML graduate students intern at Google,
etc. and take jobs at startups

* I'm not much good at ML

B.ML applications in electronic structure

* ML-designed force fields
— Configuration space: Behler-Parinello, Csanyji,..
— Compound space: s-GDML, ANI,...
+ Data repositories of DFT calculations
— NOMAD
— Materials Genome project

* Accelerating MD,...

emical discovery von
jcations 11, 4895 (2020).

Lilienfeld,

ML application: classical forces

* Run DFT (or better) calculations to make
training set

+ Train a deep neural network to create a force

field
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Maximum diversification of data is a central theme in building generalized and accurate - — —— -
machine learning (ML) models. In chemistry, ML has been used to develop models for
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energy surfaces and atomic charge models. The ANI-1x and ANI-1ccx ML-based general- s Y -] = A ri A

purpose potentials for organic molecules were developed through active learning; an

automated data diversification process. Here, we describe the ANI-1x and ANI-lccx data

sets. To demonstrate data diversity, we visualize it with a dimensionality reduction scheme,
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and contrast against existing data sets. The ANI-1x data set contains multiple QM properties
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from 5 M density functional theory calculations, while the ANI-1cex data set contains 500 k F% .
data points obtained with an accurate CCSD(T)/CBS extrapolation. Approximately 14 million - .
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the chemical elements C, H, N, and O are provided: energies, atomic forces, multipole

; o : Fig. 2 Key steps in the optmized DecPMD-kit, taking water as an exampl
(ieron 8ur} MOMeNts, atomic charges, etc. We provide this data to the community to aid research and R Cieron Burke 1 24 Koy steps in the optimized DecPMID-AT taking water as an example o

development of ML models for chemistry.
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C. Finding density functionals Crucial theme

Almost all ML for functionals in literature takes
existing approximate forms and uses data to
‘improve’ them

+ These are still approximations (usually
semilocal) that fail in difficult cases!

+ Almost all my work uses the entire density to
find the exact functional to a given level of
accuracy

+ Creates functionals that solve problems where

existing approximations fail.

Kieron Burke ML for DF 11 Ki
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Kieron Burke

First demo problem in DFT

® N non-interacting same-spin fermions confined to |d box

® Define class of potential:

o(@) = — 3 asespl(—(z — b/(2e2)
=1

® Represent the density on a grid with spacing Az = 1/(G — 1)

® ML-DFA for KE:

T(n) = TZ ajk(ng,n)

k[n,n"=exp (- | dx (n(x)-n"(x))?/(262))

ML for DF

Test case: KS electrons in a box

Generae 2000 potencls. Soe for up o

4 secarons.

M A o AT |AT AT
40 24x107° 238 33 30 23
60 1L0x107° 95 12 12 10,
|80 6TX107 48 043 054 7
100 34%107 43 005 024 32
150 25% 1077 33 0.060 010 13
200 17x107 28 0031 0053 065
- 2 100 13x107 52 013 020 18
3100 20x1077 74 012 018 18
4100 14x107 73 0078 0.4 2.3
141 400 18x107 47T 002 020 3.6

LDA ~ 223 keal/mol, Gradient correction ~ 159 keal/mol

Finding Density Functionals with Machine Learning John C.
Snyder, Matthias Rupp, Katja Hansen, Klaus-Robert Miiller,
Kieron Burke, Phys. Rev. Lett. 108, 253002 (2012)

Kieron Burke

Theory:
‘Simultaneous

Derivative Ref Meyer, Manuel Weichselbaum and Andreas W. Hauseruoural of
Chemical Theory and Compuation 202016 9), 5685 5654

ML foroFT ™
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Application: MD with ML functional

Kie

Malonaldehyde
Proton Transfer

“Bypassing the Kohn-Sham equations with machine learning”,
Felix Brockherde, Leslie Vogt, Li Li,
Mark E. Tuckerman, Kieron Burke, Klaus-Robert Miiller,
Nature Communications, 2017

on Burke ML for DF
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Dr. Felix Brockherde
Senior Data Scientist

Felix s a Senior Data Scientist at
Fresenius Medical Care Dat
Solutions. He excels on
challenging data-driven-projects.
starting in the medical
technology sector, he founded a
consulting company working on
the explainability of deep.
learning decisions with clients in
the automotive industry and
natural language-processing of
technical publications in the
aviation industry.
Felix taught and researched in
the Machine Learning group at
TU Beriin, the Institute of Pure:
and Applied Mathematics at
UCLA, and the Max Planck
Insttute of Microstructure
Physics. He holds a PhD in data
science, a MISc in computer
science and a B5c in purg,
mathematics
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100

ML for XC

« Aim: To find E[n] for static (strong) correlation

+ Background

— All standard approximations to E.[n] fail as bonds
are stretched.

— Called static correlation in chemistry

— Also effects accuracy at equilibrium for multiple
bonds

— Origin of mixing fraction of E, in global hybrids
— Gets worse as length of a chain grows

Kieron Burke ML for DF 18
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First attempts ML for E,.[n]

Exchange-correlation potentials

David J. Tozer, Victoria E. Ingamells, and Nicholas C. Handy
Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom

(Received 14 May 1996; accepted 22 August 1996)

We describe our implementation of the Zhao, Morrison, and Parr method [Phys. Rev. A 50, 2138
(1994)] for the of molecular exch: jon potentials from high-level ab initio
densities. The use of conventional Gaussian basis sets demands careful consideration of the value of
the Lagrange multiplier associated with the constraint that reproduces the input density. Although
formally infinite, we demonstrate that a finite value should be used in finite basis set calculations.
The potential has been determined for Ne, HF, N,, H,0, and Ny(1.5r,), and compared with popular
analytic potentials. We have then examined how well the Zhao, Morrison, Parr potential can be
represented using a computational neural network. Assuming v .=v(p), we incorporate the neural
network into a regular Kohn—Sham procedure [Phys. Rev. A 140, 1133 (1965)] with encouraging
results. The extension of this method to include density derivatives is briefly outlined. © 7996
American Institute of Physics. [S0021-9606(96)01444-4]

Kieron Burke ML for DF

CMY Science 2008
u C H, binding curve
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Insights into Current Limitations of
Density Functional Theory
Kieron Burke ML for DF v 20
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E..[n] from a few molecules

llpj‘CompuIat\:ma Materials

‘www.nature.com/npjcompumats

ARTICLE  OPEN [ ortorpmes
Completing density functional theory by machine learning
hidden messages from molecules

Ryo Nagai (', Ryosuke Akashi' and Osamu Sugino'?

Kohn-Sham density functional theory (DFT) is the basis of moder computational approaches to electronic structures. Their
accuracy heavily relies on the exchange-correlation energy functional, which encapsulates electron-electron interaction beyond
the classical model. As its universal form remains undiscovered, approximated functionals constructed with heuristic approaches
are used for practical studies. However, there are problems in their accuracy and transferability, while any systematic approach to
improve them is yet obscure. In this study, we demonstrate that the functional can be systematically constructed using accurate
density distributions and energies in reference Iy, a from
only a few molecules is already applicable to hundreds of molecules comprising various first- and second-row elements with the
same accuracy as the standard functionals. This is achieved by relating density and energy using a flexible feed-forward neural
network, which allows us to take a functional derivative via the back-propagation algorithm. In addition, simply by introducing a
nonlocal density descriptor, the nonlocal effect is included to improve accuracy, which has hitherto been impractical. Our approach
thus will help enrich the DFT framework by utilizing the rapidly advancing machine-learning technique.

npj Computational Materials (2020)6:43; https://doi.org/10.1038/541524-020-0310-0

physical asymptotic
Kieron Burke ML {_Ryo Noga, Ryosuke Akast, and Osam Sugino Phys. Rev. Research 4, 013106 (2022)

onstraints

1D electronic structure lab \

* Very difficult to get realistic benchmark results
for strong correlation for bulk materials.

+ Have very efficient solver (DMRG) for 1D
problems

* Previously applied only to model Hamiltonians
(with great effect)

+ Creator of DMRG is Steve White, UCI physics

Kieron Burke

or DF 2
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Prototype of Strong/static
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Kohn-Sham calculations with the exact functional, Lucas O. Wagner, Thomas €. Baker, € Hoyer un Dogus iley Pederson  Burke
Cubuk
Kieron Burke M. Stoudenmire, Kieron Burke, Steven R. White, Phys. Rev. 890, 045109 (2014), Kieron Burke VLo (Google UC Irvi 2
vine

Kohn-Sham regularizer

PHYSICAL REVIEW LETTERS 126, 036401 (2021)

Kohn-Sham Equati as Regularizer: Building Prior Knowledge
into Machine-Learned Physics
Li Li (371),"" Stephan Hoyer®,' Ryan Pederson®,” Ruoxi Sun (#A#1%)®," Ekin D. Cubuk®,'
Patrick Riley®,' and Kieron Burke®™
'Google Research, Mountain View, California 94043, USA

2Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
*Department of Chemisiry, University of California, Irvine, California 92697, USA

®| (Received 18 September 2020; accepted 3 December 2020; published 20 January 2021)
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1D H, binding curves
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Would it work for weak correlation?

* Appeared on arXiv:2110.14846, Generalizability of density

functionals learned from differentiable programming on weakly

correlated spin-polarized systems Bhupalee Kalita, Ryan Pederson, Li
Li Kieron Burke

+ Was presented Neurips workshop on differentiable

programming Dec 13, 2021
* Latest version scientific article

+ Tried it for (1D) molecules at equilibrium, i.e.,
weakly COrre'a‘l‘nr'l cvetem

How Well Does Kohn-Sham Regularizer Work for Weakly Correlated Systems? B. Kalita,
Pederson, J. Chen, L. Li, and K. Burke, J. Phys. Chem. Lett. 13, 11, 2540-2547 (2022)

Kieron Burke
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Training and testing

Total energies and densities are generated from accurate 1D DMRG
calculations with exponential approximation, solved in real space on a grid
of 513 points.

Differentiable DFT built using JAX library

Number of KS iterations fixed based on the training or test examples.
Trained using L-BFGS.

Calculations are repeated for 30 random seeds and optimal parameters are
chosen based on validation loss.

Training and testing can be performed on GPU or CPU.

Training  Validati Testing
H,He.Li Be® Ho, H;. Hy Hj  Hj »
Be,Bet* LiH, BeHy, HeH™,
H-He-He-H?*,
He-H-H-He>*
Kieron Burke ML for DFT

The Journal of Physical Cheistry Letters JS———
(@)
Ve
Ha Hs Ha HY H
. E‘ a
LiH BeH; HeH* H-He-He-H?* He-H-H-He? *
G [ — s A [ i
x
)
Ha Hy He HE Hi

BeH, " Hen*
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Recent science
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Layman’s view

( Compl
Learning

y Tamed by Machi

Machine learning and density functional theory R. Pederson, B. Kalita, and K. Burke,

Kieron Burke Nat. Rev. Phys. (2022). DOI: 10.1038/542254-022-00470-2

Gaz Physics  Mathomatics Biology  Computor Scionco  Topics  Archive oA a

Last work from

Li

Li

SCIENCE ADVANCES | RESEARCH ARTICLE

COMPUTER SCIENCE
Evolving symbolic density functionals

He Ma', Arunachalam Narayanaswamy’, Patrick Riley'?, Li Li'*

contain more than tens of thousands of parameters,lading to 2 huge gap n lhe formulation with the conven-
mbolic unctionalEvolutionary

Seareh (SyFES) in
d easi e funconale we e

how th;
g functic /, SYFES found a ional, Accelerated

2),
mecomd, new direction in power for the systematic devel

ment of symbolic density functionals.

Kieron Burke ML for DF

Ma etal., Sci. Adv. 8, eabq0279 (2022)

= 0805 +7.989w - 7548w + 2001wV

F, = 0862+ 0937 + 0318w

Fees

9 September 2022

- 4108w - 5.2421° - 17661 + 7,538 w

17610235 (9)

@

®

31

32




8/5/23

D Some closing thoughts

Kieron Burke ML for DF 33

LAMMPS simulation

+ CdSe being shocked using LAMMPS

FCT phase (red) Warzite phase (grey)

Rocksalt (blue) & FCT (red) mixed phase

*+ Recently, saw movie from Aidan Thompson of
C being shocked with 18 billion atoms in ML
potential

Kieron Burke ML for DF 34
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BRIEF COMMUNICATION

https://doi.org/10.1038/541587-019-0224-x

Tao Guo®2 and Alan Aspuru-Guzik3#5¢

Weh: A& i del ive tenso-

nature
biotechnology

Deep learning enables rapid identification of
potent DDR1 kinase inhibitors

Alex Zhavoronkov®™, Yan A. Ivanenkov', Alex Aliper', Mark S. Veselov', Vladimir A. Aladinskiy',
Anastasiya V. Aladinskaya', Victor A. Terentiev', Daniil A. Polykovskiy', Maksim D. Kuznetsov',
Arip Asadulaev', Yury Volkov', Artem Zholus', Rim R. Shayakhmetov', Alexander Zhebrak',

Lidiya I. Minaeva', Bogdan A. Zagribelnyy', Lennart H. Lee ©?, Richard Soll?, David Madge?, Li Xing?,

ial reinforcement learning (GENTRL), for denovo small-mole-
cule design. GENTRL optimizes synthetic feasibility, novelty,

ivity. We used GENTRL to discover potent
ain receptor 1(DDRY), a kinase tar-
get implicated in fibrosis and other diseases, in 21 days. Four
compounds were active in biochemical assays, and two were
validated in cell-based assays. One lead candidate was tested
and favorable inetics in mice.

Kieron Burke

" tally tested in 46 days, which demonstrates the potential of
this approach to provide rapid and effective molecular design (Fig. 12).

To create GENTRL, we combined reinforcement learning, varia-
tional inference, and tensor decompositions into a generative two-
step machine learning algorithm (Supplementary Fig. 1)"". First, we
learned a mapping of chemical space, a set of discrete molecular
graphs, toa of \ dthe
structure of the learned manifold in the tensor train format to use par-
tially known properties. Our auto-encoder-based model compresses

KAIST3:ML in science

A feedback loop?

+ Serious ML funding is 100 x bigger than
electronic structure funding

* ML is eager for new applications in new
domains

+ Electronic structure is eager for resources

* Do a little ML in DFT, get 10 x usual money

+ With 10 x usual money, triple the size of your
elec struc group

+ With triple ML output, ask for more ML money

35
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Paola Gori-Giorgi \

Highly respected cond matter and
quantum chemistry theorist

DFT developer

Postdoc with Perdew and Andeas Savin
Full Prof at VU Amsterdam

Quit for Microsoft Al for Science in Nov
2022

Says working conditions much better
there

Has hired several former group
members

Summary

Kohn-Sham regularizer, using both energy and
density losses and full differential
programming, is very efficient way to learn
chemical accuracy for strong correlation with
minimal data.

Also works to generate good functional for
weakly-correlated systems.

Challenge: Avoid using every point in the
system as input.

Thanks to NSF and DOE for funding.
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