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Outline

• General ML

• ML in electronic structure

• ML to make density functionals
– Orbital-free DFT
– XC energy for strong correlation

• The future
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A. What is machine learning?

• Unholy alliance of computer science, math, and 
statistics.

• Initial excitement in 1990’s with first neural 
networks (NN’s), inspired by brain architecture

• Computing power and data acquisition lead to 
revolution about 2010

• Last 5 years, increasingly dominated by neural 
networks (deep learning)

• ML=applied statistics + non-linearity + GPUs
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Challenges for physical scientists

• ML designed for generic real-world data, much 
involving human caprice.

• Physical science governed by underlying 
physical laws (eg laws of thermodynamics)

• Fits that disobey such laws are obviously junk.
• Scientists have lots of prior knowledge and 

intuition that is very difficult to categorize.
• General purpose ML algorithms can easily give 

nonsense
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More challenges

• Computer science is NOT physical science.
• Publication in computer science is very different, 

because the standards are very different.
• Because of enthusiasm for ML, lots of papers 

appearing in chemistry and materials.
• More than ½ do not meet basic quality standards 

for reproducibility, test selection, etc.
• 90% are likely to prove worthless (true of all good 

research).
• But 10% are first papers ever doing something
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My qualifications

• Pioneered using ML for finding functionals 
(2012), with Klaus Robert-Mueller

• I teach ML for physical sciences for last 4 years
• Just gave 4-hour lecture series to all Korea
• ML is a paradigm shift in modelling
• If you’re a current graduate student, you’d be 

crazy not to learn/do a little ML
• My ML graduate students intern at Google, 

etc. and take jobs at startups
• I’m not much good at ML
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B.ML applications in electronic structure

• ML-designed force fields
– Configuration space: Behler-Parinello, Csanyi,..
– Compound space: s-GDML, ANI,…

• Data repositories of DFT calculations
– NOMAD
– Materials Genome project

• Accelerating MD,…
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Editorial: Special Topic on Data-enabled Theoretical Chemistry 
Matthias Rupp, O. Anatole von Lilienfeld, Kieron Burke, Journal of 
Chemical Physics  148, 241401 (2018)

Retrospective on a decade of machine learning for chemical discovery von Lilienfeld, 
O. Anatole; Burke, Kieron, Nature Communications 11, 4895 (2020).
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ML application: classical forces

• Run DFT (or better) calculations to make 
training set

• Train a deep neural network to create a force 
field
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Abstract—For 35 years, ab initio molecular dynamics (AIMD)
has been the method of choice for modeling complex atom-
istic phenomena from first principles. However, most AIMD
applications are limited by computational cost to systems with
thousands of atoms at most. We report that a machine learning-
based simulation protocol (Deep Potential Molecular Dynamics),
while retaining ab initio accuracy, can simulate more than 1
nanosecond-long trajectory of over 100 million atoms per day,
using a highly optimized code (GPU DeePMD-kit) on the Summit
supercomputer. Our code can efficiently scale up to the entire
Summit supercomputer, attaining 91 PFLOPS in double precision
(45.5% of the peak) and 162/275 PFLOPS in mixed-single/half
precision. The great accomplishment of this work is that it opens
the door to simulating unprecedented size and time scales with ab
initio accuracy. It also poses new challenges to the next-generation
supercomputer for a better integration of machine learning and
physical modeling.

Index Terms—Deep potential molecular dynamics, ab initio
molecular dynamics, machine learning, GPU, heterogeneous ar-
chitecture, Summit

I. JUSTIFICATION FOR PRIZE

Record molecular dynamics simulation of >100 million
atoms with ab initio accuracy. Double/mixed-single/mixed-
half precision performance of 91/162/275 PFLOPS on 4,560
nodes of Summit (27,360 GPUs). For a 127-million-atom cop-
per system, time-to-solution of 8.1/4.6/2.7⇥10�10 s/step/atom,
or equivalently 0.8/1.5/2.5 nanosecond/day, >1000⇥ im-
provement w.r.t state-of-the-art.

II. PERFORMANCE ATTRIBUTES

Performance attribute Our submission

Category of achievement Time-to-solution, scalability
Type of method used Deep potential molecular dynamics
Results reported on basis of Whole application including I/O
Precision reported Double precision, mixed precision
System scale Measured on full system
Measurements Timers, FLOP count

§Corresponding author

III. OVERVIEW OF THE PROBLEM

A. ab initio molecular dynamics

Molecular dynamics (MD) [1], [2] is an in silico simulation
tool for describing atomic processes that occur in materials
and molecules. The accuracy of MD lies in the description
of atomic interactions, for which the ab initio molecular
dynamics (AIMD) scheme [3], [4] stands out by evolving
atomic systems with the interatomic forces generated on-the-
fly using first-principles electronic structure methods such as
the density functional theory (DFT) [5], [6]. AIMD permits
chemical bond cleavage and formation events to occur and
accounts for electronic polarization effects. Due to the faithful
description of atomic interactions by DFT, AIMD has been the
major avenue for the microscopic understanding of a broad
spectrum of issues, such as drug discovery [7], [8], complex
chemical processes [9], [10], nanotechnology [11], etc.

The computational cost of AIMD generally scales cubically
with respect to the number of electronic degrees of freedom.
On a desktop workstation, the typical spatial and temporal
scales achievable by AIMD are ⇠100 atoms and ⇠10 picosec-
onds. From 2006 to 2019, the peak performance of the world’s
fastest supercomputer has increased about 550-folds, (from
360 TFLOPS of BlueGene/L to 200 PFLOPS of Summit), but
the accessible system size has only increased 8 times (from 1K
Molybdenum atoms with 12K valence electrons [12] to 11K
Magnesium atoms with 105K valence electrons [13]), which
obeys almost perfectly the cubic-scaling law. Linear-scaling
DFT methods [14]–[17] have been under active developments,
yet the pre-factor in the complexity is still large, and the time
scales attainable in MD simulations remain rather short.

For problems in complex chemical reactions [18], [19],
electrochemical cells [20], nanocrystalline materials [21], [22],
radiation damage [23], dynamic fracture, and crack propaga-
tion [24], [25], etc., the required system size typically ranges
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Fig. 2: Key steps in the optimized DeePMD-kit, taking water as an example.

block-wide sorting.
According to Amdahl’s law, an ideal overall speedup can

only be achieved by accelerating all calculations. In our imple-
mentation, all customized TensorFlow operators, Environment,
ProdForce, and ProdViral, which compute the environment
matrix, force, and the virial, respectively, are migrated and
optimized on the GPU. In particular, a fine-grained parallelism
is utilized to exploit the computing power of the GPU.

Now that all computationally intensive tasks are carried out
by the GPU, we further reduce the time for GPU memory
allocation by allocating a trunk of GPU memory at the
initialization stage, and re-using the GPU memory throughout
the MD simulation. The CPU-GPU memory copy operations
are also optimized to eliminate non-essential data transfer
processes.

3) Mixed-precision computation: The approximation prop-
erty of the DNN-based DP model provides us with an oppor-
tunity for mixed-precision calculations. In the optimized code,
different levels of mixed precision are tested, and we find
that two prescriptions of mixed precision are of satisfactory
stability and accuracy. Both of them use double precision for
atomic positions and the environment matrix construction. In
the MIX-32 scheme, all parameters of the embedding net and
fitting net are stored in single precision (32-bit). The envi-
ronment matrix is converted from double precision to single
precision, then all the arithmetic operations of the embedding
net and the fitting net are performed in single precision. In the
MIX-16 scheme, the parameters of the embedding net and the
first two fitting net layers are stored in half precision (16-bit).
The environment matrix is cast to half precision and then fed to
the embedding net. In each embedding net layer and the first
two fitting net layers, the GEMM operations are performed

using Tensor Cores on V100 GPU with accumulations in
single precision, except for those in the first embedding net
layer that do not meet the size requirements for using Tensor
Cores. All other floating point operations, such as TANH
and TANHGrad, are conducted in single precision due to
accuracy considerations. The data are cast to half precision
before writing the global memory. Note that in the last layer
of the fitting net, both data storage and arithmetic operations
are kept in single precision, which is critical to the accuracy
of the MIX-16 scheme. Finally, the outputs of the fitting net of
MIX-32 and MIX-16 are converted back to double precision,
and the total energy of the system is reduced from the atomic
contributions. The model parameters W and b are trained in
double precision, and cast to single and half precision in the
MIX-32 and MIX-16 schemes, respectively.

We compare the mixed-precision schemes with the double
precision by using a typical configuration of a water system
composed of 512 molecules. With MIX-32 we observe a
deviation of 5.2 ⇥ 10�6 eV (normalized by the number of
molecules) in the energy prediction and a root mean square
deviation of 2.5 ⇥ 10�6 eV/Å in the force prediction, which
indicates an excellent agreement with the double precision
scheme. With MIX-16 we observe a deviation of 3.6⇥10�3 eV
(normalized by number of molecules) in the energy prediction
and a root mean square deviation of 5.7⇥ 10�3 eV/Å in the
force prediction. The deviation in the force prediction is signif-
icantly smaller than the training error (⇠4⇥10�2 eV/Å). The
deviation in energy prediction is comparable to the training
error, but is already much smaller than the chemical accuracy
(⇠4⇥10�2 eV/molecule). The accuracy of the mixed-precision
schemes in predicting physical observables is further validated
in Sec. VII-A3.
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C. Finding density functionals
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Crucial theme

• Almost all ML for functionals in literature takes 
existing approximate forms and uses data to 
‘improve’ them

• These are still approximations (usually 
semilocal) that fail in difficult cases!

• Almost all my work uses the entire density to 
find the exact functional to a given level of 
accuracy

• Creates functionals that solve problems where 
existing approximations fail.

Kieron Burke ML for DFT 12
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First demo problem in DFT

• Represent the density on a grid with spacing

2

x ⇤ 1, with hard walls. For continuous potentials v(x),
we can solve the Schrödinger equation numerically with the
lowest N orbitals occupied, finding the KE T (N) and the
electronic density n(x), which is the sum of the squares of
the occupied orbitals. Our aim is to construct a ML-DFA
for the kinetic energy T [n] that bypasses the need to solve
the Schrödinger equation, enabling a 1d analog of orbital-
free DFT. In 1d orbital-free DFT, the local approximation,
as used in Thomas-Fermi theory, is typically accurate to
within 10%, and the addition of the leading gradient cor-
rection reduces the error to about 1%[]. Unfortunately, even
this small an error in the total KE is too large to give accu-
rate chemical properties.

The first step is to choose a representation for the density.
We discretize n(x) on a uniform grid, xj = j/(G � 1),
j = 0, . . . , G � 1, with spacing �x = 1/(G � 1). Next
we specify a class of potentials to generate a dataset from.
We choose a linear combination of 3 Gaussian dips with
di�erent depths, widths, and centers:

v(x) = �
3X

i=1

ai exp(�(x� bi)
2/(2c2i )). (1)

We generate potentials vj(x) for j = 1, . . . , 2000, randomly
sampling ai ⌅ [1, 10], bi ⌅ [0.4, 0.6], and ci ⌅ [0.03, 0.1].
For each potential vj(x), we solve for the KE Tj,N and den-
sity nj,N ⌅ RG on the grid using Numerov’s method, for
N = 1, . . . , 4. For G = 500, the error in Tj,N due to dis-
cretization is less than 1.5⇥10�7, which is too small to limit
the accuracy of the functional. We use samples 1 through
M for training, and designate samples 1001 through 2000
as the test set.

We use kernel ridge regression (KRR) to approximate the
KE functional. KRR is a non-linear version of regression
with regularization to prevent overfitting [10]. In KRR, the
ML-DFA takes the form

T̂ (n) = T̄
MX

j=1

�jk(nj ,n), (2)

where �j are weights to be determined, nj are training den-
sities and k is the kernel, which measures similarity between
densities. Here T̄ =

PM
j=1 Tj/M , arbitrarily chosen as the

KE scale, and Tj is the exact KE of nj . We choose the
Gaussian kernel, used commonly in ML:

k(n,n⇥) = exp(�⇧n� n⇥⇧2/(2⌅2)), (3)

where ⌅ is a hyperparameter called the length scale. The
weights are found by minimizing the cost function

C(↵) =
MX

j=1

�T 2
j + ⇥2⇧↵⇧2, (4)

where �Tj = T̂ (nj) � Tj and ↵ = (�1, . . . ,�M ). The
second term is known as a regularizer, and penalizes large
weights to prevent overfitting. The hyperparameter ⇥ is
called the noise level. Minimizing C(↵) gives

↵ = (K + ⇥2I)�1T, (5)

whereK is the kernel matrix with elementsKij = k(ni,nj),
I is the identity matrix, and T = (T1, . . . , TM ).

The hyperparameters, ⌅ and ⇥, are determined through
cross-validation: The training set is partitioned into 10 bins
of equal size. For each bin, the functional is trained on the
remaining samples and ⌅ and ⇥ are optimized by minimizing
the mean absolute error (MAE) on the bin. The partitioning
is repeated up to 40 times and the hyperparameters are
given by the median over all bins.

Table I gives the performance of the ML-DFA (Eq. 2)
trained on M N -electron densities and evaluated on the
corresponding N -electron test set. The mean KE of the
test set for N = 1 is 5.40 Hartree (3390 kcal/mol). To con-
trast, the LDA in 1d is T loc[n] = ⇤2

R
dxn3(x)/6 and the

von Weizsäcker functional is TW[n] =
R
dxn⇥(x)2/(8n(x)).

For N = 1, the MAE of T loc on the test set is 223
kcal/mol and the modified gradient expansion approxima-
tion[], TMGEA[n] = T loc[n] � c TW[n], has a MAE of 159
kcal/mol, where c = 0.0556 has been chosen to minimize
the error. For the ML-DFA, both the mean and maximum
absolute errors improve asM increases, and improve slightly
as N increases. At M = 80, we have already achieved
“chemical accuracy,” i.e., a MAE below 1 kcal/mol. At
M = 200, even the maximum absolute error on the entire
test set is below this mark. In addition, incorporating dif-
ferent N into the training set has little e�ect on the overall
performance.

N M � ⇥ |�T | |�T |std |�T |max

1

40 2.4� 10�5 238 3.3 3.0 23.

60 1.0� 10�5 95 1.2 1.2 10.

80 6.7� 10�6 48 0.43 0.54 7.1

100 3.4� 10�7 43 0.15 0.24 3.2

150 2.5� 10�7 33 0.060 0.10 1.3

200 1.7� 10�7 28 0.031 0.053 0.65

2 100 1.3� 10�7 52 0.13 0.20 1.8

3 100 2.0� 10�7 74 0.12 0.18 1.8

4 100 1.4� 10�7 73 0.078 0.14 2.3

1-4† 400 1.8� 10�7 47 0.12 0.20 3.6

TABLE I. Dependence of the performance of the ML-DFA on
the number of training densities, M , and electron number,
N . The noise level, �, and the length scale, ⇥, are deter-
mined via cross-validation. The performance is given by the
mean (|�T |), standard deviation (|�T |std), and maximum
(|�T |max) of the absolute errors, in kcal/mol, of the func-
tional evaluated on the test set. †Training set includes nj,N

for j = 1, . . . , 100 and N = 1, . . . , 4.

With such unheard of accuracy, it is tempting to declare
“mission accomplished,” but this would be premature. A
functional that predicts only the energy is useless in prac-
tice, since DFT uses functional derivatives in self-consistent
procedures to find the density within a given approximation.
For non-interacting fermions in a potential v(x), minimizing

Prototype

• N non-interacting same-spin fermions confined to 1d box

• ML-DFA for KE:

2

x ⇤ 1, with hard walls. For continuous potentials v(x),
we can solve the Schrödinger equation numerically with the
lowest N orbitals occupied, finding the KE T (N) and the
electronic density n(x), which is the sum of the squares of
the occupied orbitals. Our aim is to construct a ML-DFA
for the kinetic energy T [n] that bypasses the need to solve
the Schrödinger equation, enabling a 1d analog of orbital-
free DFT. In 1d orbital-free DFT, the local approximation,
as used in Thomas-Fermi theory, is typically accurate to
within 10%, and the addition of the leading gradient cor-
rection reduces the error to about 1%[]. Unfortunately, even
this small an error in the total KE is too large to give accu-
rate chemical properties.
The first step is to choose a representation for the density.

We discretize n(x) on a uniform grid, xj = j/(G � 1),
j = 0, . . . , G � 1, with spacing �x = 1/(G � 1). Next
we specify a class of potentials to generate a dataset from.
We choose a linear combination of 3 Gaussian dips with
di�erent depths, widths, and centers:

v(x) = �
3X

i=1

ai exp(�(x� bi)
2/(2c2i )). (1)

We generate potentials vj(x) for j = 1, . . . , 2000, randomly
sampling ai ⌅ [1, 10], bi ⌅ [0.4, 0.6], and ci ⌅ [0.03, 0.1].
For each potential vj(x), we solve for the KE Tj,N and den-
sity nj,N ⌅ RG on the grid using Numerov’s method, for
N = 1, . . . , 4. For G = 500, the error in Tj,N due to dis-
cretization is less than 1.5⇥10�7, which is too small to limit
the accuracy of the functional. We use samples 1 through
M for training, and designate samples 1001 through 2000
as the test set.
We use kernel ridge regression (KRR) to approximate the

KE functional. KRR is a non-linear version of regression
with regularization to prevent overfitting [10]. In KRR, the
ML-DFA takes the form

T̂ (n) = T̄
MX

j=1

�jk(nj ,n), (2)

where �j are weights to be determined, nj are training den-
sities and k is the kernel, which measures similarity between
densities. Here T̄ =

PM
j=1 Tj/M , arbitrarily chosen as the

KE scale, and Tj is the exact KE of nj . We choose the
Gaussian kernel, used commonly in ML:

k(n,n⇥) = exp(�⇧n� n⇥⇧2/(2⌅2)), (3)

where ⌅ is a hyperparameter called the length scale. The
weights are found by minimizing the cost function

C(↵) =
MX

j=1

�T 2
j + ⇥2⇧↵⇧2, (4)

where �Tj = T̂ (nj) � Tj and ↵ = (�1, . . . ,�M ). The
second term is known as a regularizer, and penalizes large
weights to prevent overfitting. The hyperparameter ⇥ is
called the noise level. Minimizing C(↵) gives

↵ = (K + ⇥2I)�1T, (5)

whereK is the kernel matrix with elementsKij = k(ni,nj),
I is the identity matrix, and T = (T1, . . . , TM ).
The hyperparameters, ⌅ and ⇥, are determined through

cross-validation: The training set is partitioned into 10 bins
of equal size. For each bin, the functional is trained on the
remaining samples and ⌅ and ⇥ are optimized by minimizing
the mean absolute error (MAE) on the bin. The partitioning
is repeated up to 40 times and the hyperparameters are
given by the median over all bins.
Table I gives the performance of the ML-DFA (Eq. 2)

trained on M N -electron densities and evaluated on the
corresponding N -electron test set. The mean KE of the
test set for N = 1 is 5.40 Hartree (3390 kcal/mol). To con-
trast, the LDA in 1d is T loc[n] = ⇤2

R
dxn3(x)/6 and the

von Weizsäcker functional is TW[n] =
R
dxn⇥(x)2/(8n(x)).

For N = 1, the MAE of T loc on the test set is 223
kcal/mol and the modified gradient expansion approxima-
tion[], TMGEA[n] = T loc[n] � c TW[n], has a MAE of 159
kcal/mol, where c = 0.0556 has been chosen to minimize
the error. For the ML-DFA, both the mean and maximum
absolute errors improve asM increases, and improve slightly
as N increases. At M = 80, we have already achieved
“chemical accuracy,” i.e., a MAE below 1 kcal/mol. At
M = 200, even the maximum absolute error on the entire
test set is below this mark. In addition, incorporating dif-
ferent N into the training set has little e�ect on the overall
performance.

N M � ⇥ |�T | |�T |std |�T |max

1

40 2.4� 10�5 238 3.3 3.0 23.

60 1.0� 10�5 95 1.2 1.2 10.

80 6.7� 10�6 48 0.43 0.54 7.1

100 3.4� 10�7 43 0.15 0.24 3.2

150 2.5� 10�7 33 0.060 0.10 1.3

200 1.7� 10�7 28 0.031 0.053 0.65

2 100 1.3� 10�7 52 0.13 0.20 1.8

3 100 2.0� 10�7 74 0.12 0.18 1.8

4 100 1.4� 10�7 73 0.078 0.14 2.3

1-4† 400 1.8� 10�7 47 0.12 0.20 3.6

TABLE I. Dependence of the performance of the ML-DFA on
the number of training densities, M , and electron number,
N . The noise level, �, and the length scale, ⇥, are deter-
mined via cross-validation. The performance is given by the
mean (|�T |), standard deviation (|�T |std), and maximum
(|�T |max) of the absolute errors, in kcal/mol, of the func-
tional evaluated on the test set. †Training set includes nj,N

for j = 1, . . . , 100 and N = 1, . . . , 4.

With such unheard of accuracy, it is tempting to declare
“mission accomplished,” but this would be premature. A
functional that predicts only the energy is useless in prac-
tice, since DFT uses functional derivatives in self-consistent
procedures to find the density within a given approximation.
For non-interacting fermions in a potential v(x), minimizing

• Define class of potential:

2

x ⇤ 1, with hard walls. For continuous potentials v(x),
we can solve the Schrödinger equation numerically with the
lowest N orbitals occupied, finding the KE T (N) and the
electronic density n(x), which is the sum of the squares of
the occupied orbitals. Our aim is to construct a ML-DFA
for the kinetic energy T [n] that bypasses the need to solve
the Schrödinger equation, enabling a 1d analog of orbital-
free DFT. In 1d orbital-free DFT, the local approximation,
as used in Thomas-Fermi theory, is typically accurate to
within 10%, and the addition of the leading gradient cor-
rection reduces the error to about 1%[]. Unfortunately, even
this small an error in the total KE is too large to give accu-
rate chemical properties.

The first step is to choose a representation for the density.
We discretize n(x) on a uniform grid, xj = j/(G � 1),
j = 0, . . . , G � 1, with spacing �x = 1/(G � 1). Next
we specify a class of potentials to generate a dataset from.
We choose a linear combination of 3 Gaussian dips with
di�erent depths, widths, and centers:

v(x) = �
3X

i=1

ai exp(�(x� bi)
2/(2c2i )). (1)

We generate potentials vj(x) for j = 1, . . . , 2000, randomly
sampling ai ⌅ [1, 10], bi ⌅ [0.4, 0.6], and ci ⌅ [0.03, 0.1].
For each potential vj(x), we solve for the KE Tj,N and den-
sity nj,N ⌅ RG on the grid using Numerov’s method, for
N = 1, . . . , 4. For G = 500, the error in Tj,N due to dis-
cretization is less than 1.5⇥10�7, which is too small to limit
the accuracy of the functional. We use samples 1 through
M for training, and designate samples 1001 through 2000
as the test set.

We use kernel ridge regression (KRR) to approximate the
KE functional. KRR is a non-linear version of regression
with regularization to prevent overfitting [10]. In KRR, the
ML-DFA takes the form

T̂ (n) = T̄
MX

j=1

�jk(nj ,n), (2)

where �j are weights to be determined, nj are training den-
sities and k is the kernel, which measures similarity between
densities. Here T̄ =

PM
j=1 Tj/M , arbitrarily chosen as the

KE scale, and Tj is the exact KE of nj . We choose the
Gaussian kernel, used commonly in ML:

k(n,n⇥) = exp(�⇧n� n⇥⇧2/(2⌅2)), (3)

where ⌅ is a hyperparameter called the length scale. The
weights are found by minimizing the cost function

C(↵) =
MX

j=1

�T 2
j + ⇥2⇧↵⇧2, (4)

where �Tj = T̂ (nj) � Tj and ↵ = (�1, . . . ,�M ). The
second term is known as a regularizer, and penalizes large
weights to prevent overfitting. The hyperparameter ⇥ is
called the noise level. Minimizing C(↵) gives

↵ = (K + ⇥2I)�1T, (5)

whereK is the kernel matrix with elementsKij = k(ni,nj),
I is the identity matrix, and T = (T1, . . . , TM ).
The hyperparameters, ⌅ and ⇥, are determined through

cross-validation: The training set is partitioned into 10 bins
of equal size. For each bin, the functional is trained on the
remaining samples and ⌅ and ⇥ are optimized by minimizing
the mean absolute error (MAE) on the bin. The partitioning
is repeated up to 40 times and the hyperparameters are
given by the median over all bins.
Table I gives the performance of the ML-DFA (Eq. 2)

trained on M N -electron densities and evaluated on the
corresponding N -electron test set. The mean KE of the
test set for N = 1 is 5.40 Hartree (3390 kcal/mol). To con-
trast, the LDA in 1d is T loc[n] = ⇤2

R
dxn3(x)/6 and the

von Weizsäcker functional is TW[n] =
R
dxn⇥(x)2/(8n(x)).

For N = 1, the MAE of T loc on the test set is 223
kcal/mol and the modified gradient expansion approxima-
tion[], TMGEA[n] = T loc[n] � c TW[n], has a MAE of 159
kcal/mol, where c = 0.0556 has been chosen to minimize
the error. For the ML-DFA, both the mean and maximum
absolute errors improve asM increases, and improve slightly
as N increases. At M = 80, we have already achieved
“chemical accuracy,” i.e., a MAE below 1 kcal/mol. At
M = 200, even the maximum absolute error on the entire
test set is below this mark. In addition, incorporating dif-
ferent N into the training set has little e�ect on the overall
performance.

N M � ⇥ |�T | |�T |std |�T |max

1

40 2.4� 10�5 238 3.3 3.0 23.

60 1.0� 10�5 95 1.2 1.2 10.

80 6.7� 10�6 48 0.43 0.54 7.1

100 3.4� 10�7 43 0.15 0.24 3.2

150 2.5� 10�7 33 0.060 0.10 1.3

200 1.7� 10�7 28 0.031 0.053 0.65

2 100 1.3� 10�7 52 0.13 0.20 1.8

3 100 2.0� 10�7 74 0.12 0.18 1.8

4 100 1.4� 10�7 73 0.078 0.14 2.3

1-4† 400 1.8� 10�7 47 0.12 0.20 3.6

TABLE I. Dependence of the performance of the ML-DFA on
the number of training densities, M , and electron number,
N . The noise level, �, and the length scale, ⇥, are deter-
mined via cross-validation. The performance is given by the
mean (|�T |), standard deviation (|�T |std), and maximum
(|�T |max) of the absolute errors, in kcal/mol, of the func-
tional evaluated on the test set. †Training set includes nj,N

for j = 1, . . . , 100 and N = 1, . . . , 4.

With such unheard of accuracy, it is tempting to declare
“mission accomplished,” but this would be premature. A
functional that predicts only the energy is useless in prac-
tice, since DFT uses functional derivatives in self-consistent
procedures to find the density within a given approximation.
For non-interacting fermions in a potential v(x), minimizing
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Performance

LDA ~ 223 kcal/mol, Gradient correction ~ 159 kcal/mol
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x ⇤ 1, with hard walls. For continuous potentials v(x),
we can solve the Schrödinger equation numerically with the
lowest N orbitals occupied, finding the KE T (N) and the
electronic density n(x), which is the sum of the squares of
the occupied orbitals. Our aim is to construct a ML-DFA
for the kinetic energy T [n] that bypasses the need to solve
the Schrödinger equation, enabling a 1d analog of orbital-
free DFT. In 1d orbital-free DFT, the local approximation,
as used in Thomas-Fermi theory, is typically accurate to
within 10%, and the addition of the leading gradient cor-
rection reduces the error to about 1%[]. Unfortunately, even
this small an error in the total KE is too large to give accu-
rate chemical properties.

The first step is to choose a representation for the density.
We discretize n(x) on a uniform grid, xj = j/(G � 1),
j = 0, . . . , G � 1, with spacing �x = 1/(G � 1). Next
we specify a class of potentials to generate a dataset from.
We choose a linear combination of 3 Gaussian dips with
di�erent depths, widths, and centers:

v(x) = �
3X

i=1

ai exp(�(x� bi)
2/(2c2i )). (1)

We generate potentials vj(x) for j = 1, . . . , 2000, randomly
sampling ai ⌅ [1, 10], bi ⌅ [0.4, 0.6], and ci ⌅ [0.03, 0.1].
For each potential vj(x), we solve for the KE Tj,N and den-
sity nj,N ⌅ RG on the grid using Numerov’s method, for
N = 1, . . . , 4. For G = 500, the error in Tj,N due to dis-
cretization is less than 1.5⇥10�7, which is too small to limit
the accuracy of the functional. We use samples 1 through
M for training, and designate samples 1001 through 2000
as the test set.

We use kernel ridge regression (KRR) to approximate the
KE functional. KRR is a non-linear version of regression
with regularization to prevent overfitting [10]. In KRR, the
ML-DFA takes the form

T̂ (n) = T̄
MX

j=1

�jk(nj ,n), (2)

where �j are weights to be determined, nj are training den-
sities and k is the kernel, which measures similarity between
densities. Here T̄ =

PM
j=1 Tj/M , arbitrarily chosen as the

KE scale, and Tj is the exact KE of nj . We choose the
Gaussian kernel, used commonly in ML:

k(n,n⇥) = exp(�⇧n� n⇥⇧2/(2⌅2)), (3)

where ⌅ is a hyperparameter called the length scale. The
weights are found by minimizing the cost function

C(↵) =
MX

j=1

�T 2
j + ⇥2⇧↵⇧2, (4)

where �Tj = T̂ (nj) � Tj and ↵ = (�1, . . . ,�M ). The
second term is known as a regularizer, and penalizes large
weights to prevent overfitting. The hyperparameter ⇥ is
called the noise level. Minimizing C(↵) gives

↵ = (K + ⇥2I)�1T, (5)

whereK is the kernel matrix with elementsKij = k(ni,nj),
I is the identity matrix, and T = (T1, . . . , TM ).
The hyperparameters, ⌅ and ⇥, are determined through

cross-validation: The training set is partitioned into 10 bins
of equal size. For each bin, the functional is trained on the
remaining samples and ⌅ and ⇥ are optimized by minimizing
the mean absolute error (MAE) on the bin. The partitioning
is repeated up to 40 times and the hyperparameters are
given by the median over all bins.
Table I gives the performance of the ML-DFA (Eq. 2)

trained on M N -electron densities and evaluated on the
corresponding N -electron test set. The mean KE of the
test set for N = 1 is 5.40 Hartree (3390 kcal/mol). To con-
trast, the LDA in 1d is T loc[n] = ⇤2
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dxn3(x)/6 and the

von Weizsäcker functional is TW[n] =
R
dxn⇥(x)2/(8n(x)).

For N = 1, the MAE of T loc on the test set is 223
kcal/mol and the modified gradient expansion approxima-
tion[], TMGEA[n] = T loc[n] � c TW[n], has a MAE of 159
kcal/mol, where c = 0.0556 has been chosen to minimize
the error. For the ML-DFA, both the mean and maximum
absolute errors improve asM increases, and improve slightly
as N increases. At M = 80, we have already achieved
“chemical accuracy,” i.e., a MAE below 1 kcal/mol. At
M = 200, even the maximum absolute error on the entire
test set is below this mark. In addition, incorporating dif-
ferent N into the training set has little e�ect on the overall
performance.
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TABLE I. Dependence of the performance of the ML-DFA on
the number of training densities, M , and electron number,
N . The noise level, �, and the length scale, ⇥, are deter-
mined via cross-validation. The performance is given by the
mean (|�T |), standard deviation (|�T |std), and maximum
(|�T |max) of the absolute errors, in kcal/mol, of the func-
tional evaluated on the test set. †Training set includes nj,N

for j = 1, . . . , 100 and N = 1, . . . , 4.
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Using standard methods from machine learning, we introduce a novel technique for density functional
approximation. We use kernel ridge regression with a Gaussian kernel to approximate the non-interacting
kinetic energy of 1d multi-electron systems. With fewer than 100 training densities, we can achieve
mean absolute errors of less than 1 kcal/mol on new densities. We determine densities for which our
new functional will fail or perform well. Finally, we use principle component analysis to extract accurate
functional derivatives from our functional, enabling an orbital-free minimization of the total energy to
find a self-consistent density. This empirical method has two parameters, set via cross-validation, and
requires no human intuition. In principle, this general technique can be extended to multi-dimensional
systems, and be used to approximate exchange-correlation density functionals.

More than 10,000 papers per year report solutions to
electronic structure problems using Kohn-Sham (KS) den-
sity functional theory (DFT) [1, 2], all approximating the
exchange-correlation (XC) energy as a functional of the elec-
tronic spin densities. The quality of the results depends
crucially on these density functional approximations (DFAs)
[]. Present DFAs often fail for strongly correlated systems[],
rendering the methodology useless for some of the most
interesting problems.

There is a never-ending search for improved XC approxi-
mations. The original local density approximation (LDA) of
Kohn and Sham [2] is uniquely defined by the properties of
the uniform gas, and has been argued to be a universal limit
of all systems [3, 4]. But the refinements that have proved
useful in chemistry and materials are not, and di�er both in
their derivations and details. Traditionally, physicists have
championed a non-empirical approach, deriving approxima-
tions from quantum mechanics and avoiding fitting to spe-
cific finite systems[]. But chemists typically use a few [5, 6]
or several dozen [7] parameters to improve accuracy on a
limited class of molecules. Non-empirical functionals can be
considered controlled extrapolations that work well across a
broad range of systems and properties, bridging the divide
between molecules and solids. Empirical functionals are lim-
ited interpolations that are more accurate for the molecular
systems they are fitted to, but often fail for solids. A re-
cent example is the van der Waals functional of Langreth
and Lundquist [8], and an empirical derivative for which no
derivation was deemed necessary[]. Passionate debates are
fueled by this cultural divide.

Machine learning (ML) is a powerful tool for finding pat-
terns in high-dimensional spaces. It employs algorithms by
which the computer learns from empirical data via induc-
tion. ML has been very successful in many applications,
including neuroscience ?? and chemistry [9]. In this work,
we apply ML methodology to a prototype density functional
problem: non-interacting spinless fermions confined to a
1d box, subject to a smooth potential. The accuracy we
achieve in approximating the kinetic energy (KE) of this
system is far beyond the capabilities of present human-
designed approximations and is su⇥cient to produce highly

accurate self-consistent densities—the functional derivative
is extremely accurate. We also define key technical concepts
needed to apply ML to DFT problems.

Empirical DFAs employ the basic types of approximations
derived from general principles, fitting the parameters to
training sets of energy di�erences[]. They explore only an
infinitesimal fraction of all possible functionals and use rel-
atively few data points. The ML-derived DFA (ML-DFA)
achieves chemical accuracy using many more inputs, with-
out reference to any of the underlying physics. Intuition
is kept to a minimum but remains necessary to specify the
basic mechanism and representation of data.

We illustrate the accuracy of the ML-DFA in Fig. 1, in
which the functional was constructed from 100 densities on
a dense grid. The successful construction of this functional
opens up a new approach to functional approximation, en-
tirely distinct from previous approaches: The ML-DFA con-
tains on the order of 104 empirical numbers and satisfies
none of the standard exact conditions.
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FIG. 1. Comparison of a sample projected (see within) func-
tional derivative of the ML-DFA with the projected exact
derivative.

The prototype DFT problem we consider is N non-
interacting spinless Fermions confined to a 1d box, 0 �
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the training dataset, thereby reducing the number of explicit
CCSD(T) calculations needed to obtain chemical accuracy.

Results
Theory. A central difficulty in quantum chemistry is the funda-
mental incompatibility of the formalisms of DFT and wave-
function based ab initio methods such as CCSD(T). Both aim to
deliver the ground-state energy of a molecule as a function of its
nuclear coordinates. Ab initio methods directly solve the elec-
tronic Schrödinger equation, albeit in an approximate yet sys-
tematic and controllable fashion. KS-DFT, by contrast, buries all
the quantum complexity into an unknown functional of the
density, i.e., the exchange-correlation (XC) energy, which must be
approximated71,72. A myriad of different forms for such KS-DFT
approximations exist. Unfortunately, there is currently no prac-
tical route for converting an approximation in one formalism to
an approximation in the other, as there is no simple mathematical
route to coupling the two formalisms.

In this work, we leverage ML to bypass this difficulty, by
correcting DFT energies to CCSD(T) energies. Routine DFT

calculations use some approximate XC functional and solve the
Kohn-Sham equations self-consistently. However, an alternative
approach has long been considered (e.g., ref. 73), in which the
exact energy, E, is found by correcting an approximate self-
consistent DFT calculation:

E ¼ EDFT½nDFT# þ ΔE½nDFT#; ð1Þ
where DFT denotes the approximate DFT calculation, and ΔE,
evaluated on the approximate density, is defined, formally, such
that E is the exact energy. This is not the functional of standard
KS-DFT, but it still yields exact energies and can be a more
practical alternative in which one solves the KS equations within
that approximation but corrects the final energy by ΔE. If nDFT is
a highly accurate approximation, then ΔE should not differ much
from the intrinsic error of the DFT XC approximation. Recently,
several classes of DFT calculations have been improved by using
densities that are not self-consistent74,75. Thus, regression of DFT
densities to find CC energies can be considered a system-specific
construction of ΔE[nDFT] of the same kind as the system-specific
construction of the HK map53. This differs from a general
purpose, explicit XC functional approximation in that (i) it might
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Fig. 1 Illustration of density-based machine learning for water conformer energies. For all panels, DFT energies (orange) are shown alongside CC
energies (blue) for the same molecular conformers, with optimized geometries indicated by open diamonds. a The nuclear potential, represented by an
approximate Gaussians potential, is the input to a set of ML models that return the electron density53. This learned density is the input for independent ML
predictions of molecular energies based on DFT or CC electronic structure calculations, or the difference between these energies, in order to correct the
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training energy (top), along with the relative energy errors for DFT compared to CC for each conformer (bottom). Note that the DFT energy errors are not
a simple function of the energy relative to the minimum energy geometry (see Supplementary Fig. 2), as short O–H bond lengths tend to be too high in
energy and stretched bonds are overstabilized. c Average out-of-sample prediction errors for the different ML functionals compared to the reference ECC

energies. The MAE of the EDFT energies w.r.t. ECC is also shown as a dashed line. d The energy surface (in kcal mol−1) of symmetric water geometries for
EDFTML (orange) and ECCΔ!DFT (blue) after applying the Δ-DFT correction (bottom). For this figure, DFT calculations use the PBE functional, and CC
calculations use CCSD(T) (see “Methods” for more details).
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cost by combining the ML models. The middle panel of Fig. 3b
shows the CC trajectory using a reversible reference-system based
multi-time-step integrator81 to evaluate energies and forces
primarily with the ECC

sML½nDFTsML " model as a reference and with
periodic force corrections based on the more accurate
ECC
sΔ#DFT ½nDFTsML " every three steps (see Supplementary Note 1.4

and Supplementary Fig. 17 for more details). The resulting
trajectory has a MAE of 3.8 kcal mol−1 relative to the true CC
energies, with the largest errors in regions that are sparsely
represented in the training set. This self-consistent exploration of
the configurational space with the combined ML models provides
an opportunity to improve the sampling in a cost-effective
manner.

Combining densities for improved sampling. The electron
density provides some advantages as a descriptor of a chemical
system over inputs that rely solely on local atomic environments
or connectivity11,12,82. For a given periodic cell and number of
basis functions, the same density input structure is able to
describe systems with different numbers, types, and orders of
atoms. In contrast, models that rely on an atomistic decom-
position of the energy must have representations for the envir-
onment of each separate element (for example, see refs. 6,26). To
improve the sampling represented in the training set for resor-
cinol, we can leverage overlap with configurational spaces sam-
pled by similar, yet smaller and less costly, molecules. For
example, adding data for phenol can provide better sampling of
the rotation of an OH group, while the dynamics of benzene
contains extensive sampling of C–C bonds.

To demonstrate this feature of density-based ML models, we
use 1001 geometries for each of these two molecules as input
configurations (see Supplementary Figs. 8, 18), along with the
1004 resorcinol configurations. We trained a set of density-to-
energy maps, combining the symmetrized datasets, pairwise and
as a complete set, and then we used the resorcinol test set to
evaluate the performance of this model. In each case, the density-
to-energy map was learned by combining the densities of the
different molecules into a single dataset. The models using

combinations of true or independently learned densities,
displayed in Tables 4 and 5 and Supplementary Tables 8 and 9,
show significant improvements in performance, with the predic-
tion error being reduced by 30–60%. The results for models
trained on DFT energies are similar to those for CC energies and
can be found in Supplementary Table 10.

In addition, we can analogously train an ML-HK map by
combining the artificial potentials of the different molecules into
one dataset in order to produce a combined map (nDFTsML#c). Using
the combination of symmetrized phenol and resorcinol data to
train the ML-HK map improves the performance of the direct
ML energy models, although the Δ-DFT approach is again less
sensitive to the density representation. We note that, unlike the
models with independently learned densities, simply adding more
training data by including benzene in the ML-HK map, does not
significantly change the results. Molecular similarity clearly
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dashed grey lines indicating the barrier between conformers. For this figure, all DFT calculations use PBE and all CC energies are from CCSD(T).

Table 4 ECCsML MAEs (kcal mol−1) for combinations of
molecular datasets evaluated on the resorcinol test set.

Resorcinol Resorcinol phenol Resorcinol phenol benzene

nDFT 0.99 0.49 0.53
nDFTsML 1.37 1.04 0.70
nDFTsML#c n/a 0.69 0.71

n/a not applicable

Table 5 ECCsΔ#DFT MAEs (kcal mol−1) for combinations of
molecular datasets evaluated on the resorcinol test set.

Resorcinol Resorcinol phenol Resorcinol phenol benzene

nDFT 0.11 0.06 0.07
nDFTsML 0.11 0.09 0.08
nDFTsML#c n/a 0.07 0.09

n/a not applicable
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ML for XC

• Aim: To find Exc[n] for static (strong) correlation

• Background
– All standard approximations to Exc[n] fail as bonds 

are stretched.
– Called static correlation in chemistry
– Also effects accuracy at equilibrium for multiple 

bonds
– Origin of mixing fraction of Ex in global hybrids
– Gets worse as length of a chain grows
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First attempts ML for Exc[n]

Exchange-correlation potentials
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We describe our implementation of the Zhao, Morrison, and Parr method @Phys. Rev. A 50, 2138
~1994!# for the calculation of molecular exchange-correlation potentials from high-level ab initio
densities. The use of conventional Gaussian basis sets demands careful consideration of the value of
the Lagrange multiplier associated with the constraint that reproduces the input density. Although
formally infinite, we demonstrate that a finite value should be used in finite basis set calculations.
The potential has been determined for Ne, HF, N2, H2O, and N2(1.5re), and compared with popular
analytic potentials. We have then examined how well the Zhao, Morrison, Parr potential can be
represented using a computational neural network. Assuming vxc5vxc~r!, we incorporate the neural
network into a regular Kohn–Sham procedure @Phys. Rev. A 140, 1133 ~1965!# with encouraging
results. The extension of this method to include density derivatives is briefly outlined. © 1996
American Institute of Physics. @S0021-9606~96!01444-4#

I. INTRODUCTION

In a preliminary publication,1 we have outlined how it
may be possible to obtain near-exact numerical exchange-
correlation potentials for molecular systems, given near-
exact one-electron densities. In this paper we discuss this
approach in much greater depth, and use the data to train a
neural network to determine approximate exchange-
correlation potentials.

The starting point for this research is the availability of
very high accuracy one-electron densities for molecules from
sophisticated quantum chemistry calculations, in particular
the coupled cluster method.2 Such ~response! densities r~r!
are expressed in terms of products of Gaussian basis func-
tions, r~r!5(Dabha~r!hb~r!. At the outset we observe that
such densities are not exact densities and, in percentage
terms, they will be in considerable error near nuclei and far
away from them. But such errors are not that important be-
cause regions near nuclei are a very small fraction of the
total significant three-dimensional space occupied by the
molecule, and asymptotically the density is very small. Thus
in our molecular studies we shall not obtain high accuracy
properties everywhere, but in the regions which are impor-
tant for energetic properties, we should obtain reliable quan-
tities.

It is the central feature of density functional theory that a
knowledge of the one-electron density is sufficient to deter-
mine all molecular properties, as originally argued by Ho-
henberg and Kohn.3 This can be simply understood through
Bright-Wilson’s4 interpretation that ‘‘the cusps of the density
tells us where the nuclei are, the shape of the cusp tells us
what they are, and the integral of the density tells us the
number of electrons. Thus the Hamiltonian is known from
which everything is known.’’

There has been much interest, primarily for atomic sys-
tems, in obtaining near-exact exchange-correlation potentials
from the electron density. An early study by Almbladh and
Pedroza5 used correlated densities for light atoms, and com-
pared the exchange-correlation potential with the local den-

sity approximation. Nagy6 has also used numerical methods
to calculate exact exchange potentials using Hartree–Fock
densities as input. More recently, with others, she has looked
at the exchange-correlation energy densities for He and H2.7
Stott and co-workers8 have published a number of papers in
which they have examined the exchange-correlation poten-
tials for atoms, and Görling and Ernzerhof9 have performed
similar studies on heavier atoms. More important for our
interest in chemistry is the work of Gritsenko, Van Leeuwen,
and Baerends10 who have calculated the exchange-
correlation potential for LiH from an input correlated ab ini-
tio density, using an iterative scheme. We have chosen to
follow the scheme of Zhao, Morrison, and Parr,11 hereon
referred to as ZMP, to determine our molecular exchange-
correlation potentials. ZMP have successfully determined
exchange-correlation potentials for a number of atoms, using
orbitals represented in terms of basis sets.

In Secs. II and III we describe how we have applied
ZMP theory to closed-shell molecules, and in Sec. IV we
present our computed potentials for a number of molecular
systems. This information allows a direct comparison with
common analytic potentials ~e.g., LDA, BLYP! and we have
devised a quantity which allows a quantitative assessment of
the accuracy of these functionals. Results are presented in
Sec. IV.

The search is on for improved exchange-correlation
functionals; many scientists have been engaged since the
work of Becke12 who showed the tremendous improvement
in molecular predictions which is obtained when the gradient
of the density is introduced into the exchange functional. It
must be said that since that time ~1988! no major progress
has been made, either by constraining functionals to obey
exact mathematical conditions13 or examining other func-
tionals involving the density and its gradient which have
been dreamt up by rather arbitrary means.14 We subscribe to
the view that it is very difficult to make progress in this
direction and consider an alternative approach using the
above ZMP potentials represented by a computational neural
network ~CNN!.
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Insights into Current Limitations of
Density Functional Theory
Aron J. Cohen, Paula Mori-Sánchez, Weitao Yang*

Density functional theory of electronic structure is widely and successfully applied in simulations
throughout engineering and sciences. However, for many predicted properties, there are spectacular
failures that can be traced to the delocalization error and static correlation error of commonly used
approximations. These errors can be characterized and understood through the perspective of fractional
charges and fractional spins introduced recently. Reducing these errors will open new frontiers for
applications of density functional theory.

Interactions between electrons determine the
structure and properties of matter from mol-
ecules to solids. To describe interacting elec-

trons, the extremely simple three-dimensional
electron density can be used as the basic variable
within density functional theory (DFT) (1, 2),
negating the need in many cases for the massive-
ly complex many-dimensional wave function.

Kohn noted in his Nobel lecture that DFT
“has been most useful for systems of very many
electrons where wave function methods encounter
and are stopped by the exponential wall” (3). The
beauty of DFT is that its formalism is exact yet
efficient, with one determinant describing the
electron density—all of the complexity is hidden
in one term, the exchange-correlation functional.
This term holds the key to the success or failure
of DFT. Exchange arises from antisymmetry due
to the Pauli exclusion principle, and correlation
accounts for the remaining complicated many-
body effects that need many determinants to be
fully described. However, the form of exchange-
correlation in terms of the density remains un-
known and it is necessary to use approximations,
so that inmany casesDFTcontains semi-empirical
parameters. The great success of DFT is that sim-
ple approximations perform remarkably well for
a wide range of problems in chemistry and phys-
ics (4–6), particularly for prediction of the struc-
ture and thermodynamic properties of molecules
and solids.

Despite thewidespread popularity and success
of DFT, its application can still suffer from large
pervasive errors that cause qualitative failures in
predicted properties. These failures are not break-
downs of the theory itself but are only due to
deficiencies of the currently used approximate
exchange-correlation functionals. A systematic
approach for constructing functionals that are
universally applicable is a hard problem and has
remained elusive.

A possible path forward is to have a deeper
look at the errors embedded in currently used
functionals to determine the origin of their pa-
thologies at the most basic level. Recent work
has traced many of the errors in calculations to
violations of conditions of the exact functional
(7, 8). These violations present themselves in
extremely simple model atoms, which can be
used for diagnosis, and more importantly, in
many interesting and complex chemical and

physical systems. Identifying and understanding
the basic errors offer a much needed path for the
development of functionals, as well as a useful
insight into potential pitfalls for practical
applications.

What are some of the major failures in DFT
calculations? First, they underestimate the barriers
of chemical reactions, the band gaps of materials,
the energies of dissociating molecular ions, and
charge transfer excitation energies. They also over-
estimate the binding energies of charge transfer
complexes and the response to an electric field in
molecules andmaterials. Surprisingly, all of these
diverse issues share the same root—the delocal-
ization error of approximate functionals, due to the
dominating Coulomb term that pushes electrons
apart. This error can be understood from a per-
spective that invokes fractional charges (7, 9).
Furthermore, typical DFT calculations fail to de-
scribe degenerate or near-degenerate states, such
as arise in transitionmetal systems, the breaking of
chemical bonds, and strongly correlated materials.
All of these problems are merely manifestations
of another common error—the static correlation
error of approximate functionals. This problem
arises because of the difficulty in using the elec-
tron density to describe the interaction of degen-
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Fig. 1. DFT approximations fail. The dissociation of H2+ molecule (A) and H2 molecule (C) are shown for
calculations with approximate functionals: Hartree-Fock (HF), local density approximation (LDA), and
B3LYP. Although DFT gives good bonding structures, errors increase with the bond length. The huge errors
at dissociation of H2

+ exactly match the error of atoms with fractional charges (B), and for H2 they exactly
match the error of atoms with fractional spins (D). The understanding of these failures leads to the
characterization of the delocalization error and static correlation error that are pervasive throughout
chemistry and physics, explaining a host of problems with currently used exchange-correlation functionals.
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Density functional theory of electronic structure is widely and successfully applied in simulations
throughout engineering and sciences. However, for many predicted properties, there are spectacular
failures that can be traced to the delocalization error and static correlation error of commonly used
approximations. These errors can be characterized and understood through the perspective of fractional
charges and fractional spins introduced recently. Reducing these errors will open new frontiers for
applications of density functional theory.

Interactions between electrons determine the
structure and properties of matter from mol-
ecules to solids. To describe interacting elec-

trons, the extremely simple three-dimensional
electron density can be used as the basic variable
within density functional theory (DFT) (1, 2),
negating the need in many cases for the massive-
ly complex many-dimensional wave function.

Kohn noted in his Nobel lecture that DFT
“has been most useful for systems of very many
electrons where wave function methods encounter
and are stopped by the exponential wall” (3). The
beauty of DFT is that its formalism is exact yet
efficient, with one determinant describing the
electron density—all of the complexity is hidden
in one term, the exchange-correlation functional.
This term holds the key to the success or failure
of DFT. Exchange arises from antisymmetry due
to the Pauli exclusion principle, and correlation
accounts for the remaining complicated many-
body effects that need many determinants to be
fully described. However, the form of exchange-
correlation in terms of the density remains un-
known and it is necessary to use approximations,
so that inmany casesDFTcontains semi-empirical
parameters. The great success of DFT is that sim-
ple approximations perform remarkably well for
a wide range of problems in chemistry and phys-
ics (4–6), particularly for prediction of the struc-
ture and thermodynamic properties of molecules
and solids.

Despite thewidespread popularity and success
of DFT, its application can still suffer from large
pervasive errors that cause qualitative failures in
predicted properties. These failures are not break-
downs of the theory itself but are only due to
deficiencies of the currently used approximate
exchange-correlation functionals. A systematic
approach for constructing functionals that are
universally applicable is a hard problem and has
remained elusive.

A possible path forward is to have a deeper
look at the errors embedded in currently used
functionals to determine the origin of their pa-
thologies at the most basic level. Recent work
has traced many of the errors in calculations to
violations of conditions of the exact functional
(7, 8). These violations present themselves in
extremely simple model atoms, which can be
used for diagnosis, and more importantly, in
many interesting and complex chemical and

physical systems. Identifying and understanding
the basic errors offer a much needed path for the
development of functionals, as well as a useful
insight into potential pitfalls for practical
applications.

What are some of the major failures in DFT
calculations? First, they underestimate the barriers
of chemical reactions, the band gaps of materials,
the energies of dissociating molecular ions, and
charge transfer excitation energies. They also over-
estimate the binding energies of charge transfer
complexes and the response to an electric field in
molecules andmaterials. Surprisingly, all of these
diverse issues share the same root—the delocal-
ization error of approximate functionals, due to the
dominating Coulomb term that pushes electrons
apart. This error can be understood from a per-
spective that invokes fractional charges (7, 9).
Furthermore, typical DFT calculations fail to de-
scribe degenerate or near-degenerate states, such
as arise in transitionmetal systems, the breaking of
chemical bonds, and strongly correlated materials.
All of these problems are merely manifestations
of another common error—the static correlation
error of approximate functionals. This problem
arises because of the difficulty in using the elec-
tron density to describe the interaction of degen-
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Fig. 1. DFT approximations fail. The dissociation of H2+ molecule (A) and H2 molecule (C) are shown for
calculations with approximate functionals: Hartree-Fock (HF), local density approximation (LDA), and
B3LYP. Although DFT gives good bonding structures, errors increase with the bond length. The huge errors
at dissociation of H2

+ exactly match the error of atoms with fractional charges (B), and for H2 they exactly
match the error of atoms with fractional spins (D). The understanding of these failures leads to the
characterization of the delocalization error and static correlation error that are pervasive throughout
chemistry and physics, explaining a host of problems with currently used exchange-correlation functionals.
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Completing density functional theory by machine learning
hidden messages from molecules
Ryo Nagai 1,2✉, Ryosuke Akashi1 and Osamu Sugino1,2

Kohn–Sham density functional theory (DFT) is the basis of modern computational approaches to electronic structures. Their
accuracy heavily relies on the exchange-correlation energy functional, which encapsulates electron–electron interaction beyond
the classical model. As its universal form remains undiscovered, approximated functionals constructed with heuristic approaches
are used for practical studies. However, there are problems in their accuracy and transferability, while any systematic approach to
improve them is yet obscure. In this study, we demonstrate that the functional can be systematically constructed using accurate
density distributions and energies in reference molecules via machine learning. Surprisingly, a trial functional machine learned from
only a few molecules is already applicable to hundreds of molecules comprising various first- and second-row elements with the
same accuracy as the standard functionals. This is achieved by relating density and energy using a flexible feed-forward neural
network, which allows us to take a functional derivative via the back-propagation algorithm. In addition, simply by introducing a
nonlocal density descriptor, the nonlocal effect is included to improve accuracy, which has hitherto been impractical. Our approach
thus will help enrich the DFT framework by utilizing the rapidly advancing machine-learning technique.

npj Computational Materials �����������(2020)�6:43� ; https://doi.org/10.1038/s41524-020-0310-0

INTRODUCTION
Machine learning (ML) is a method to numerically implement any
mapping, relationship, or function that is difficult to formulate
theoretically, only from a sampled dataset. In the past decade, it
has rapidly been proven to be effective for many practical
problems. In studies on materials, the ML scheme is often applied
to predict material properties from basic information, such as
atomic configurations, by bypassing the heavy calculation
required by electronic structure theory, as is done in the material
informatics or the construction of atomic forcefields1,2. However,
the trained ML model thus obtained often fails to be applicable for
materials whose structures or component elements are not
included in the training dataset. Meanwhile, ML schemes treating
electron density are shown to have large transferability even with
a limited training dataset3–5. This transferability originates from
the fact that the spatial distribution of the density has more
information about the intrinsic physical principles than the scalar
quantities such as energy. Thus, various physical or chemical
properties are expected to be predicted more accurately by
considering electron density than by directly predicting them
from atomic positions. Furthermore, ML has also been applied to
more fundamental physical concepts: density functional theory
(DFT).
Kohn–Sham (KS) DFT6,7 is the standard method for theoretical

studies on the electronic structures of materials. In this theory, the
solution of the KS equation

!∇2

2
þ Vion rð Þ þ

Z
dr0

n r0ð Þ
r! r0j j

þ Vxc n½ & rð Þ
! "

φi rð Þ ¼ εiφi rð Þ; (1)

with density n(r) calculated by summing |φi(r)|
2 for all the

occupied states yields the TE and the density distribution of an
interacting electron system under ionic potential Vion. The
exchange-correlation (xc) potential Vxc[n] is ideally a functional
of density; its value at r is affected by the entire density

distribution {n}. However, its explicit form remains undiscovered.
The mapping n to Vxc has been so far established locally as Vxc(n
(r)) or semilocally as Vxc(n(r), ∇n(r), …) with or without a nonlocal
augmentation by the Hartree–Fock exchange and the linear
response theory. The functionals have thus been given increas-
ingly complex analytical forms with gradually climbing the Jacob’s
ladder8, but there remains the transferability issue for most
existing functionals. “Problematic materials” are well-known,
whose accurate DFT-based description is yet to be accom-
plished9–11. Some modern functionals were criticized for being
biased toward the energy accuracy than density accuracy12,
despite the fact that both are important. The functionals have
been formulated so that the physical conditions, such as
asymptotic behaviors and scaling properties, are satisfied, but
their detailed forms rely on human heuristics, especially in the
intermediate regime where the asymptotes do not apply. On the
other hand, there are many accurate densities and energies
available, thanks to the theoretical and experimental develop-
ment, which should help us to augment the functionals toward
the ideal unbiased and transferable form. In this paper, we
demonstrate the development of Vxc utilizing such accurate
reference data with the ML.
The pioneering studies on ML application of the density

functionals have been conducted by Burke and coworkers13–15,
where the universal Hohenberg–Kohn functional FHK[n] as a sum
of the kinetic energy T[n] and the interaction energy functionals
Vee[n] was constructed for orbital-free DFT, whose framework
avoids the heavy calculation to solve the KS equation. Our
approach contrasts to theirs, as we target Vxc and adopt the KS
framework. In our previous study16, we performed the ML
mapping n→ Vxc for a two-body model system in one dimension
trained using the accurate reference data {n, Vxc} generated by the
exact diagonalization and subsequent inversion of the KS
equation with varying Vion. Therein, the neural network (NN) form

1Department of Physics, The University of Tokyo, Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan. 2Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581,
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Density Functional Theory
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Density functional theory of electronic structure is widely and successfully applied in simulations
throughout engineering and sciences. However, for many predicted properties, there are spectacular
failures that can be traced to the delocalization error and static correlation error of commonly used
approximations. These errors can be characterized and understood through the perspective of fractional
charges and fractional spins introduced recently. Reducing these errors will open new frontiers for
applications of density functional theory.

Interactions between electrons determine the
structure and properties of matter from mol-
ecules to solids. To describe interacting elec-

trons, the extremely simple three-dimensional
electron density can be used as the basic variable
within density functional theory (DFT) (1, 2),
negating the need in many cases for the massive-
ly complex many-dimensional wave function.

Kohn noted in his Nobel lecture that DFT
“has been most useful for systems of very many
electrons where wave function methods encounter
and are stopped by the exponential wall” (3). The
beauty of DFT is that its formalism is exact yet
efficient, with one determinant describing the
electron density—all of the complexity is hidden
in one term, the exchange-correlation functional.
This term holds the key to the success or failure
of DFT. Exchange arises from antisymmetry due
to the Pauli exclusion principle, and correlation
accounts for the remaining complicated many-
body effects that need many determinants to be
fully described. However, the form of exchange-
correlation in terms of the density remains un-
known and it is necessary to use approximations,
so that inmany casesDFTcontains semi-empirical
parameters. The great success of DFT is that sim-
ple approximations perform remarkably well for
a wide range of problems in chemistry and phys-
ics (4–6), particularly for prediction of the struc-
ture and thermodynamic properties of molecules
and solids.

Despite thewidespread popularity and success
of DFT, its application can still suffer from large
pervasive errors that cause qualitative failures in
predicted properties. These failures are not break-
downs of the theory itself but are only due to
deficiencies of the currently used approximate
exchange-correlation functionals. A systematic
approach for constructing functionals that are
universally applicable is a hard problem and has
remained elusive.

A possible path forward is to have a deeper
look at the errors embedded in currently used
functionals to determine the origin of their pa-
thologies at the most basic level. Recent work
has traced many of the errors in calculations to
violations of conditions of the exact functional
(7, 8). These violations present themselves in
extremely simple model atoms, which can be
used for diagnosis, and more importantly, in
many interesting and complex chemical and

physical systems. Identifying and understanding
the basic errors offer a much needed path for the
development of functionals, as well as a useful
insight into potential pitfalls for practical
applications.

What are some of the major failures in DFT
calculations? First, they underestimate the barriers
of chemical reactions, the band gaps of materials,
the energies of dissociating molecular ions, and
charge transfer excitation energies. They also over-
estimate the binding energies of charge transfer
complexes and the response to an electric field in
molecules andmaterials. Surprisingly, all of these
diverse issues share the same root—the delocal-
ization error of approximate functionals, due to the
dominating Coulomb term that pushes electrons
apart. This error can be understood from a per-
spective that invokes fractional charges (7, 9).
Furthermore, typical DFT calculations fail to de-
scribe degenerate or near-degenerate states, such
as arise in transitionmetal systems, the breaking of
chemical bonds, and strongly correlated materials.
All of these problems are merely manifestations
of another common error—the static correlation
error of approximate functionals. This problem
arises because of the difficulty in using the elec-
tron density to describe the interaction of degen-

Department of Chemistry, Duke University, Durham, NC
27708, USA.

*To whom correspondence should be addressed. E-mail:
weitao.yang@duke.edu

A H2
+ binding curve

C H2  binding curve

B H atom with fractional charge

D H atom with fractional spins

R (Angstrom)

Δ
E

 (
kc

al
/m

ol
) 1 3 5 7 9

R (Angstrom)
1 3 5 7 9

Fractional charge (e–)

Delocalization
error

Static
correlation
error

HF
B3LYP

LDA

0.0 0.25 0.5 0.75 1.0

Fractional spins [β,α]
[1,0] [3/4,1/4] [1/2,1/2] [1/4,3/4] [0,1]

30

-30

-60

0

200

0

-100

100

Fig. 1. DFT approximations fail. The dissociation of H2+ molecule (A) and H2 molecule (C) are shown for
calculations with approximate functionals: Hartree-Fock (HF), local density approximation (LDA), and
B3LYP. Although DFT gives good bonding structures, errors increase with the bond length. The huge errors
at dissociation of H2

+ exactly match the error of atoms with fractional charges (B), and for H2 they exactly
match the error of atoms with fractional spins (D). The understanding of these failures leads to the
characterization of the delocalization error and static correlation error that are pervasive throughout
chemistry and physics, explaining a host of problems with currently used exchange-correlation functionals.
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Kohn-Sham Equations as Regularizer: Building Prior Knowledge
into Machine-Learned Physics

Li Li (李力) ,1,* Stephan Hoyer ,1 Ryan Pederson ,2 Ruoxi Sun (孙若溪) ,1 Ekin D. Cubuk ,1

Patrick Riley ,1 and Kieron Burke 2,3
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(Received 18 September 2020; accepted 3 December 2020; published 20 January 2021)

Including prior knowledge is important for effective machine learning models in physics and is usually
achieved by explicitly adding loss terms or constraints on model architectures. Prior knowledge embedded
in the physics computation itself rarely draws attention. We show that solving the Kohn-Sham equations
when training neural networks for the exchange-correlation functional provides an implicit regularization
that greatly improves generalization. Two separations suffice for learning the entire one-dimensional H2

dissociation curve within chemical accuracy, including the strongly correlated region. Our models also
generalize to unseen types of molecules and overcome self-interaction error.

DOI: 10.1103/PhysRevLett.126.036401

Differentiable programming [1] is a general paradigm of
deep learning, where parameters in the computation flow
are trained by gradient-based optimization. Based on the
enormous development in automatic differentiation libra-
ries [2–5], hardware accelerators [6], and deep learning [7],
this emerging paradigm is relevant for scientific computing.
It supports extremely strong physics prior knowledge and
well-established numerical methods [8] and parametrizes
the approximation by a neural network, which can approxi-
mate any continuous function [9]. Recent highlights
include discretizing partial differential equations [10],
structural optimization [11], sampling equilibrium configu-
rations [12], differentiable molecular dynamics [13], differ-
entiable programming tensor networks [14], optimizing
basis sets in Hartree-Fock [15] method, and variational
quantum Monte Carlo [16–19] calculations.
Density functional theory (DFT), an approach to elec-

tronic structure problems, took an enormous step forward
with the creation of the Kohn-Sham (KS) equations [20],
which greatly improve accuracy from the original DFT
[21–23]. The results of solving the KS equations are
reported in tens of thousands of papers each year [24].
Given an approximation to the exchange-correlation (XC)
energy, the KS equations are solved self-consistently.
Results are limited by the quality of such approximations,
and a standard problem of KS-DFT is to calculate accurate

bond dissociation curves [25]. The difficulties are an
example of strong correlation physics as electrons localize
on separate nuclei [26].
Naturally, there has been considerable interest in using

machine learning (ML) methods to improve DFT approx-
imations. Initial work [27,28] focused on the KS kinetic
energy, as a sufficiently accurate approximation would
allow bypassing the solving of the KS equations [29,30].
For XC, recent works focus on learning the XC potential
(not functional) from inverse KS [31] and use it in the
KS-DFT scheme [32–35]. An important step forward was
made last year, when it was shown that a neural network
could find functionals using only three molecules by
training on both energies and densities [36], obtaining
accuracy comparable to human-designed functionals and
generalizing to yield accurate atomization energies of 148
small molecules [37]. But this pioneering work does not
yield chemical accuracy or approximations that work in the
dissociation limit. Moreover, it uses gradient-free optimi-
zation which usually suffers from poor convergence behav-
ior on the large number of parameters used in modern
neural networks [38–40].
Here, we show that all these limitations are overcome

by incorporating the KS equations themselves into the
neural network training by backpropagating through their
iterations—a KS regularizer (KSR) to the ML model. In a
traditional KS calculation, the XC is given, the equations
are cycled to self-consistency, and all previous iterations are
ignored in the final answer. In other ML work, functionals
are trained on either energies alone [41–44], or even
densities [33,34,45], but only after convergence. By incor-
porating the KS equations into the training, thereby
learning the relation between density and energy at every

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.
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iteration, we find accurate models with very little data and
much greater generalizability.
Our results are illustrated in Fig. 1, which is for a

one-dimensional mimic of H2 designed for testing
electronic structure methods [46]. The distribution of
curves of the ML model directly predicting E from
geometries (direct ML) in Fig. 1(a) clearly fails to
capture the physics. Next, we demonstrate KSR with
neural XC functionals from the first two rungs of Jacob’s
ladder [47] by constraining the receptive field of the
convolutional neural network [48]. The local density
approximation (LDA) has a receptive field of just the
current point, while the generalized gradient approxima-
tion (GGA) includes the nearest-neighbor points, the
minimal information for computing the spatial gradient
of the density. In Figs. 1(b) and 1(c), the effect of the
KSR yields reasonably accurate results in the vicinity of
the data, but not beyond. The KSR LDA behaves
similarly to the uniform gas LDA [46]. When an XC
functional with a global receptive field is included in
Fig. 1(d), chemical accuracy is achieved for all separa-
tions including the dissociation limit. Similar results
can be achieved for H4, the one-electron self-interaction
error can easily be made to vanish, and the interaction
of a pair of H2 molecules can be found without any
training on this type of molecule (discussed below).
Modern DFT finds the ground-state electronic density by

solving the Kohn-Sham equations:

!
−
∇2

2
þ vs½n#ðrÞ

"
ϕiðrÞ ¼ ϵiϕiðrÞ: ð1Þ

The density is obtained from occupied orbitals nðrÞ ¼P
i jϕiðrÞj2. Here, vs½n#ðrÞ ¼ vðrÞ þ vH½n#ðrÞ þ vXC½n#ðrÞ

is the KS potential consisting of the external one-body
potential and the density-dependent Hartree (H) and XC
potentials. The XC potential vXC½n#ðrÞ ¼ δEXC=δnðrÞ is
the functional derivative of the XC energy functional
EXC½n# ¼

R
ϵXC½n#ðrÞnðrÞdr, where ϵXC½n#ðrÞ is the XC

energy per electron. The total electronic energy E is then
given by the sum of the noninteracting kinetic energy Ts½n#,
the external one-body potential energy V½n#, the Hartree
energy U½n#, and XC energy EXC½n#.
The KS equations are, in principle, exact given the exact

XC functional [20,54], which in practice is the only term
approximated in DFT. From a computational perspective,
the eigenvalue problem of Eq. (1) is solved repeatedly until
the density converges to a fixed point starting from an
initial guess. We use linear density mixing [55] to improve
convergence, nðinÞkþ1 ¼ nðinÞk þ αðnðoutÞk − nðinÞk Þ. Figure 2(a)
shows the unrolled computation flow. We approximate the
XC energy per electron using a neural network ϵXC;θ½n#,
where θ represents the trainable parameters. Together with
the self-consistent iterations in Fig. 2(b), the combined
computational graph resembles a recurrent neural network
[56] or deep equilibrium model [57] with additional fixed
computational components. Density mixing improves

(a) (b) (c) (d)

FIG. 1. One-dimensional H2 dissociation curves for several ML
models trained from two molecules (red diamonds) with optimal
models (highlighted in color) selected by the validation molecule
at R ¼ 3 (black triangles). The top panel shows energy (with
ENN, the nucleus-nucleus repulsion energy) with exact values
shown by the black dashed line. The bottom panel shows the
difference from the exact curves with chemical accuracy in gray
shadow. (a) directly predicts E from geometries and clearly fails
to capture the physics from very limited data. (b)–(d) show our
method (KSR) with different inputs to the model to align with the
first two rungs of Jacob’s ladder [47] (LDA and GGA) and then
global (a fully nonlocal functional). Uniform gas LDA [46] is
shown in brown. Gray lines denote 15 sampled functionals during
training, with darker lines denoting later samples. Atomic units
used throughout.

(a) (b)

(c)

FIG. 2. KS-DFT as a differentiable program. Black arrows are
the conventional computation flow. The gradients flow along red
dashed arrows to minimize the energy loss LE and density loss
Ln. (a) The high-level KS self-consistent calculations with linear
density mixing (purple diamonds). (b) A single KS iteration
produces vXC;θ½n# and EXC;θ½n# by invoking the XC energy
calculation twice, once directly and once calculating a derivative
using automatic differentiation. (c) The XC energy calculation
using the global XC functional.
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Would it work for weak correlation?

• Appeared on arXiv:2110.14846, Generalizability of density 
functionals learned from differentiable programming on weakly 
correlated spin-polarized systems Bhupalee Kalita, Ryan Pederson, Li 
Li, Kieron Burke

• Was presented Neurips workshop on differentiable 
programming Dec 13, 2021

• Latest version scientific article

• Tried it for (1D) molecules at equilibrium, i.e., 
weakly correlated system
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How Well Does Kohn–Sham Regularizer Work for Weakly Correlated Systems?  B. Kalita, R . 
Pederson, J. Chen, L. Li, and K. Burke, J. Phys. Chem. Lett. 13, 11, 2540-2547 (2022)
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Training and testing

• Total energies and densities are generated from accurate 1D DMRG 
calculations with exponential approximation, solved in real space on a grid 
of 513 points.

• Differentiable DFT built using JAX library
• Number of KS iterations fixed based on the training or test examples.

• Trained using L-BFGS. 
• Calculations are repeated for 30 random seeds and optimal parameters are 

chosen based on validation loss. 
• Training and testing can be performed on GPU or CPU.
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Densities and potentials
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more quickly than KSR-global, reaching lower training losses
with fewer training steps (see Figure A7 in the Supporting
Information).
The size of our data set is practically limited by the chemical

space provided by 1D and the associated exponential
interaction. Even though we are dealing with a much smaller
data set, we trained the sKSR models on the ground-state
energies and densities of five atomic systems only and did not
include any molecules, contrary to results in ref 12 and ref 20,

which train on derived quantities, such as atomization and
ionization energies, and include molecules in training.
Using sKSR-global, the predicted densities of each molecule

have little noticeable error; see Figure 3a. The corresponding
XC potentials are shown in Figure 3b. For all unpolarized
systems, we run restricted KS calculations, and the up and
down XC potentials match, while for polarized systems (Li,
Be+, H2

+, and H3 only) we run unrestricted KS calculations. The
sKSR-LDA and sKSR-GGA total densities and XC potentials
for the test set are included in the Supporting Information. The

Figure 3. (a) The densities obtained using sKSR-global (orange dashes) and the exact ground-state densities (gray), (b) average XC potentials
calculated from sKSR-global approximation (red dashes) to ϵXC and their exact counterparts calculated with DMRG (light blue) for the test
molecules in Table 1 at equilibrium separations. The sKSR potentials are shifted by a constant for a better comparison with the exact XC potentials.
sKSR-global was trained on H, He, Li, Be, and Be2+ and validated on Be+. Note that, in general, these 1D densities and XC potentials can differ even
qualitatively from their 3D analogues.

The Journal of Physical Chemistry Letters pubs.acs.org/JPCL Letter

https://doi.org/10.1021/acs.jpclett.2c00371
J. Phys. Chem. Lett. 2022, 13, 2540−2547
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comparison to exact XC potentials is not expected to be as
precise, as potentials are extremely sensitive to densities.
However, for each of these examples, we see that the sKSR-
global XC potential closely mimics the exact XC potential,
even though we did not include XC potentials in the training.

Furthermore, seemingly large deviations in the XC potentials
can result in similar resulting densities. For example, this can
be seen in the case of BeH2, where the XC potentials are
noticeably different but the resulting densities are very similar.
The KS potentials are reasonably accurate for the test set (see
Supporting Information). Note that, similar to the exact XC
potentials, the sKSR-global XC potentials are smooth, due to
the use of a smooth activation function.
We can use these potentials to validate the known

theoretical properties of the exact XC potentials for different
test systems, compare with other XC approximations, and
utilize them to introduce corrections to existing local and
semilocal approximations. Similarly, sKSR-global can also
produce quite accurate spin densities even though we did
not incorporate spin densities in the loss function while
training the XC functionals (see Figure A1 in the Supporting
Information).
A very interesting question is how does our weakly

correlated sKSR behave for strongly correlated systems? We
answer this by studying the paradigm case of the H2 binding
curve in Figure 4, where the sKSR-global curve remains highly
accurate up to at least 3 bohr. On the one hand, just as with all
single-particle methods, the restricted calculation yields energy
that is far too high in the dissociated limit. On the other hand,
an unrestricted calculation, which breaks spin symmetry
beyond ∼4 bohr, does dissociate correctly, but at the price
of poor spin densities and a kink in the binding energy curve.
Figure A6 in the Supporting Information shows analogous
features for sKSR-LDA and sKSR-GGA, and it also shows the
accuracy of the total density of the unrestricted solutions at
large separations. Figure 4 also shows the result of a KSR-
global calculation (i.e., total density only) but trained just on
atoms. While it naturally dissociates correctly, it is much less
accurate. Of course, the sKSR-global of ref 17 is chemically
accurate for the entire curve because its training included a
stretched bond.
In many cases, the predictability of sKSR can extend well

beyond the equilibrium bond distance. Figure 5 shows the
complete dissociation energy curve of LiH obtained from a
restricted calculation. Near equilibrium, sKSR-LDA and sKSR-
GGA underestimate the binding energy but perform better
than LSDA. As the bond is stretched, sKSR-GGA and sKSR-
LDA quickly deviate from the expected trajectory. However,
sKSR-global performs well throughout, extending its predictive
accuracy well beyond the equilibrium bond distance. We show

Figure 4. Binding energy curve of H2 molecule calculated based on
the total energy prediction for the H2 molecule and the energy of the
individual H atoms. sKSR-global was evaluated using both restricted
KS (blue) and unrestricted KS (red dashes) scheme. The DMRG
(black) and KSR-global (green) results are also shown. All the neural
approximations, with and without spin, are trained on the data set
given in Table 1.

Figure 5. Complete dissociation energy curve of LiH molecule
generated with sKSR-LDA (orange), sKSR-GGA (green), and sKSR-
global(red). The DMRG (black dashes) and the uniform gas LSDA
(blue dashes) results are also shown. The neural XC functional
approximations were trained and validated on atoms and ions given in
Table 1.

Figure 6. (a) The total density and (b) the average XC potentials of LiH at a bond distance of 5.92 bohr calculated with the three neural XC
functionals as well as uniform-gas LSDA. The exact (DMRG) average XC potentials are included for comparison.

The Journal of Physical Chemistry Letters pubs.acs.org/JPCL Letter

https://doi.org/10.1021/acs.jpclett.2c00371
J. Phys. Chem. Lett. 2022, 13, 2540−2547
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Recent science article: DM21

QUANTUM CHEMISTRY

Pushing the frontiers of density functionals
by solving the fractional electron problem
James Kirkpatrick1*†, Brendan McMorrow1†, David H. P. Turban1†, Alexander L. Gaunt1†,
James S. Spencer1, Alexander G. D. G. Matthews1, Annette Obika1, Louis Thiry2, Meire Fortunato1,
David Pfau1, Lara Román Castellanos1, Stig Petersen1, Alexander W. R. Nelson1, Pushmeet Kohli1,
Paula Mori-Sánchez3, Demis Hassabis1, Aron J. Cohen1,4*

Density functional theory describes matter at the quantum level, but all popular approximations
suffer from systematic errors that arise from the violation of mathematical properties of the exact
functional. We overcame this fundamental limitation by training a neural network on molecular
data and on fictitious systems with fractional charge and spin. The resulting functional, DM21
(DeepMind 21), correctly describes typical examples of artificial charge delocalization and strong
correlation and performs better than traditional functionals on thorough benchmarks for main-group
atoms and molecules. DM21 accurately models complex systems such as hydrogen chains,
charged DNA base pairs, and diradical transition states. More crucially for the field, because our
methodology relies on data and constraints, which are continually improving, it represents a
viable pathway toward the exact universal functional.

C
omputing electronic energies underpins
theoretical chemistry and materials sci-
ence, anddensity functional theory (DFT)
(1, 2) promises an exact and efficient ap-
proach. However, there is a conundrum

at the heart of DFT: The exact functional—
mapping electron density to energy—is proven
to exist, but little practical guidance is given on
its explicit form. Approximations to the exact
functional have enabled numerous investiga-
tions of matter at a microscopic level and rank
as some of the most impactful works in the
whole of science (3). Nevertheless, despite their
design and success, pathological errors per-
sist in these approximations, and it has been
known for over a decade (4) that the root cause
of many of these errors is the violation of exact
conditions for systems with fractional elec-
trons. In this work, we used deep learning to
train a functional that respects these condi-
tions and thus has excellent performance across
main-group chemistry.
Since the early days of DFT, it has been clear

that approximations improve when they sat-
isfy more of the mathematical constraints of
the exact functional and fit more systems.
Seventeen known exact constraints (but not
the fractional constraints) are satisfied by
the strongly constrained and appropriately
normed (SCAN) functional (5), which achieves
unprecedented accuracy and predictiveness
for bonded systems among the functionals
that are not fitted to any bonded system. Re-

cent work has also begun to address the frac-
tional constraints, of particular interest being
a localized correction on the orbitals (6, 7). In
parallel, machine learning has emerged as a
powerful tool at the level of molecular mod-
eling in chemistry (8, 9) and has been recently
applied to functional development (10, 11).
Proof-of-principle studies have shown that
neural networks (12–16) can be trained on mo-
lecular data, but to date, they are not competi-
tive in accuracy with traditional hand-designed
functionals.
In this work, we present a functional, DM21

(DeepMind 21) that is state of the art on thor-
ough benchmark evaluation and has qualita-
tively improved properties because it obeys
two classes of constraints on systems with
fractional electrons. The types of fractional con-
straints considered were fractional charge (FC)
systems, with a noninteger total charge, and
fractional spin (FS) systems, with noninteger
spin magnetization. In both cases, the exact
energy is a linear interpolation of the energy
of the neighboring integer systems (17, 18). FC
and FS systems are fictitious, but real charge
densities can include regions that have FC or
FS character, and therefore, correctly modeling
these idealized problems helps to ensure that
functionals behave correctly in awide variety of
molecules and materials. The FC and FS lin-
earity conditions have shown to be challenging
to address withmanual design of the functional,
but they are easy to illustrate as examples. This
situation is ideally suited to a deep learning
framework, in which the constraints can be
expressed as data and a functional can be
trained to obey them and to reproduce the
energy of molecular systems.
Our functional is illustrated in Fig. 1. Only

the exchange-correlation term was learned
and interfaced to a standard Kohn-Sham DFT

code [PySCF (19)]. The functional was eval-
uated by integrating local energies computed
by a multilayer perceptron (MLP), which took
as input both local and nonlocal features of
the occupied Kohn-Sham (KS) orbitals, and
can be described as a local range-separated
hybrid. To train the functional, the sum of
two objective functions was used: a regression
loss for learning the exchange-correlation en-
ergy itself and a gradient regularization term
that ensured that the functional derivatives
can be used in self-consistent field (SCF) cal-
culations after training. For the regression
loss, we used a dataset of fixed densities rep-
resenting reactants and products for 2235 re-
actions, and the network was trained to map
from these densities to high-accuracy reaction
energies by means of a least-squares objective
(Fig. 1B). Specifically, 1161 training reactions
represented atomization, ionization, electron
affinity, and intermolecular binding energies
of small main-group, H-Kr molecules, and 1074
represented the crucial FC and FS densities
only for the atoms H-Ar (supplementary ma-
terials, section 2.1). The fixed densities for the
main-group molecules were obtained from a
popular traditional functional [B3LYP (20)],
and the energy labels were either obtained
from literature (21–25) or based on in-house
complete basis set CCSD(T) (coupled-cluster
with single and double and perturbative tri-
ple excitations) calculations. More justifica-
tion on the use of a fixed charge density is
provided in the supplementary materials,
section 4.3. For gradient training, perturba-
tion theory gives the leading order change
in energy, dESCF, after a single SCF iteration
(supplementary materials, section 1.3.1). This
energy change depends on the derivatives of
the exchange-correlation functional (Fig. 1C),
and adding dE2

SCF to the training objective en-
courages the model to avoid making spuriously
large orbital rotations away from reasonable
orbitals during self-consistent iteration. This
approach was considerably cheaper than su-
pervising explicit self-consistent iterations dur-
ing training (26) or Monte Carlo methods to
supervise densities (12). Networks with gra-
dients regularized in this way were able to run
self-consistently on all reactions in large main-
group benchmarks, and DM21 produced ac-
curate molecular densities (supplementary
materials, section 5).
After training, the behavior of the functional

was analyzed, starting with the archetypal FC
and FS systems shown in Fig. 2, A and B. We
compared DM21 with SCAN and popular hy-
brid functionals B3LYP (20), M06-2X (27), and
wB97X (28), with all calculations carried out
by using a modified version of PySCF (19). Gen-
erally, traditional functional approximations
are convex with respect to the FC exact con-
dition and concave with respect to the FS
exact condition, with improved performance
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on FC coming at the cost of a larger error in
FS, and vice versa. DM21 stands out in com-
parison as close to the correct behavior for
both FC and FS. The functional was trained
only on the exact conditions for bare atoms,
but correct behavior was also seen on frag-
ments of molecules for both FC and FS, albeit
with a somewhat larger error. This result shows
that DM21 has not simply memorized the
training examples but has found features in
the charge density of the atom data that use-
fully generalize to molecular systems.
Additional limitations of current function-

als associated with FC and FS errors are in-
correct description of bond breaking for
charged and closed-shell neutral molecules,
respectively. When dissociating a chargedmol-
ecule, functionals with a convex error for FC
artificially lower the energy by delocalizing
charge; as such, they predict that—even at in-
finite separation—a chargedmolecule is bound.
This limitation is the essence of the well-known
charge delocalization error in DFT, and DM21
achieves the correct asymptote as in Fig. 2C.
Related discussion on eigenvalues is availa-
ble in the supplementary materials, section 6.
Traditional functionals also grossly overesti-
mate the energy of a stretched closed-shell
molecule, whereas DM21 yields correct as-
ymptotes (Fig. 2D). This overestimation is often
described in terms of static correlation error
under the interpretation that at large separa-
tion, there is near degeneracy of bonding and
antibonding states that cannot be represented
by a single reference method.
Following previous studies (4, 29), we re-

visited this interpretation and instead sug-
gest that the error is due to the overestimation
of the energy for spin delocalized solutions:
Closed-shell orbitals are not capable of artifi-
cially breaking spin symmetry and localiz-
ing spins, giving asymptotes that are too
high for functionals with FS error. Addition-
ally, we made a quantitative evaluation of
the advantage of DM21 for bond breaking by
using an accurate QuantumMonte Carlo bond
breaking benchmark (BBB) (supplementary
materials, section 8.1). For neutral molecules
at intermediate distances, DM21 could ex-
hibit a “hump” in the energy. This feature,
seen before with other methods such as the
random phase approximation (30), can be
corrected with an extension to fractional oc-
cupation of the closed-shell orbitals (31). Of
the functionals presented, optimization of the
orbital occupations lowered the hump en-
ergy only for DM21 (supplementary materials,
section 3.2).
Having established the improved FC and FS

behavior of DM21 on textbook systems, how
this behavior leads to improved description of
subtle electronic structure in systems of sci-
entific interest is illustrated in Fig. 3. Three
systems from across the sciences were con-

sidered: charge delocalization in a DNA base
pair, magnetic properties of a compressed hy-
drogen chain, and reaction barrier heights
for a ring-opening intermediate with dirad-

ical character. Charge transport in DNA is a
subject of considerable experimental and the-
oretical interest (32), and the distribution of
the charge of an ionized base pair (adenine

Kirkpatrick et al., Science 374, 1385–1389 (2021) 10 December 2021 2 of 5

Fig. 1. Overview of the functional architecture and training. (A) Features of the electron density
computed from KS orbitals are sampled on an atom-centered quadrature grid. Specifically, the input features
are the spin-indexed charge density r, the norm of its gradient rrj j, the kinetic energy density t, and the
(range-separated) local Hartree Fock exchange energy densities ewHF and eHF. These are fed through a shared
MLP that predicts local enhancement factors for local density approximation and Hartree-Fock contributions
to the local exchange-correlation energy density, which is then integrated over all space. A dispersion
correction is then added to the functional. (B) The network is trained by using a dataset of KS input densities
and high-accuracy energy labels for molecules and exact mathematical constraints. (C) The gradient of
the learned functional at fixed electron number (N) is supervised by requesting that the supplied orbitals are
a stationary point of the total energy with respect to unitary rotation of occupied and virtual orbitals
(illustrated by angle d). (D) Once trained, the functional can be deployed in self-consistent calculations.
Numbers on the right indicate dataset sizes (excluding grid augmentations) for the DM21 functional.
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and thymine) is shown in Fig. 3A. A popular
functional such as B3LYP predicts charge
density delocalized over both base pairs, but
this prediction is an artefact driven by the
violations of FC conditions for the individual
bases. Conversely, DM21 is much closer to the
correct FC behavior, and charge is localized
on the adenine unit alone. The difficulties for
traditional functionals to localize charges are
well understood, but artificial spin localization
errors associated with FS violation are less
well studied.
In a highly compressed hydrogen chain, un-

restricted DFT calculations with traditional
functionals localizes spin on what appear to
be antiferromagnetic domains (Fig. 3B). This
observation has been used to bolster the evi-
dence for a magnetic phase transition (33).
Conversely, high-level wave function methods
did not yield spin polarized solutions, sug-
gesting that the symmetry breaking might

be driven by errors in traditional functionals,
and DM21 predicts a ground state with no spin
symmetry breaking. In the example of ring
opening in bicyclobutane (C4H6), the energy
of the disrotatory transition state is highly
overestimated in unrestricted calculations with
functionals such as M06-2X and wB97X but
is correctly predicted by DM21. This is again
linked to FS error; although the transition state
is a singlet, DFT predicts partial localization
of the spin with an intermediate S2h i value
between 0 and 1. This means that functionals
with incorrect FS behavior give large errors.
This result is highly reminiscent of the way
that energy is overestimated for closed-shell
bond breaking. For C4H6, high-level reference
calculations are available to verify that DM21
behaves correctly (34), but we also observed
that hybrid functionals tend to overestimate
barrier heights for transition states with in-
termediate levels of spin polarization in other

sets of reactions (supplementary materials,
section 7.2), and this phenomeneon has also
been observed in the literature for other cy-
cloaddition reactions (35).
Last, beyond the treatment of FC and FS,

analysis ofDM21 is extended to consider broader
classes of main-group chemistry contained
in large benchmark sets. Shown in Fig. 4 is the
summary performance of DM21 compared
with existing functionals on the GMTKN55
benchmark (36), a set of subbenchmarks used
to probe the behavior of functionals for several
important chemical tasks that require extrap-
olation to systems very distinct from the train-
ing set. GMTKN55 includes systems that contain
heavy atoms beyond Kr that were never seen
during training and that therefore we would
not normally recommend for DM21 [we eval-
uated these using pseudo-potentials following
the method in (36)]. We calculated the mean
absolute error for each subbenchmark and

Kirkpatrick et al., Science 374, 1385–1389 (2021) 10 December 2021 3 of 5

Fig. 2. Training on fractional electron constraints solves charge and spin
localization and delocalization errors. (A) and (C) relate to the FC constraint, and
(B) and (D) relate to the FS constraint. (A) DM21 correctly captures the piecewise
linear energy of a H atom as the electron number is continuously varied. (Insets)
Deviation from linear behavior for simple atoms (H and C), and small molecules.
(B) DM21 correctly captures the constancy condition of energy upon interpolating
between spin flipped solutions. Shown are the results for a quadruplet (N) and some
doublets (H, CH3, and AlCl2). (C) Correct handling of the fractionally charged states

generalizes to improved cation binding curves for DM21. The oracle is HF
for Hþ

2 and UCCSD(T) for Heþ2 and C2H
þ
6 . (D) Improved performance on

closed-shell bond breaking. DM21 gives the correct stretched limit but
shows a bump at intermediate distances, which is corrected in a restricted
optimization that allows fractional occupation of the highest occupied molecular
orbital (HOMO) and lowest unoccupied molecular orbital (LUMO). Oracles for
these curves come from FermiNet QMC calculations, except for C2H6, which
used UCCSD(T) at the basis set limit.
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Evolving symbolic density functionals
He Ma1, Arunachalam Narayanaswamy1, Patrick Riley1,2, Li Li1*

Systematic development of accurate density functionals has been a decades-long challenge for scientists. Despite 
emerging applications of machine learning (ML) in approximating functionals, the resulting ML functionals usually 
contain more than tens of thousands of parameters, leading to a huge gap in the formulation with the conven-
tional human-designed symbolic functionals. We propose a new framework, Symbolic Functional Evolutionary 
Search (SyFES), that automatically constructs accurate functionals in the symbolic form, which is more explain-
able to humans, cheaper to evaluate, and easier to integrate to existing codes than other ML functionals. We first 
show that, without prior knowledge, SyFES reconstructed a known functional from scratch. We then demonstrate 
that evolving from an existing functional wB97M-V, SyFES found a new functional, GAS22 (Google Accelerated 
Science 22), that performs better for most of the molecular types in the test set of Main Group Chemistry Database 
(MGCDB84). Our framework opens a new direction in leveraging computing power for the systematic develop-
ment of symbolic density functionals.

INTRODUCTION
Quantum mechanical simulations of molecules and materials are 
playing an increasingly important role in chemistry, physics, and 
materials sciences. Density functional theory (DFT) (1) has been one 
of the most successful methods for determining electronic struc-
tures of molecules and materials from first principles (2, 3) and has 
been widely used for the design and characterization of novel drugs 
(4), catalysts (5), and functional materials (6). Most DFT calculations 
performed today adopt the Kohn-Sham (KS) scheme (7). KS-DFT 
maps the challenging problem of solving the many-body Schrodinger 
equation of interacting electrons into the solution of one-body KS 
equations, with the complicated many-body effect treated with the 
exchange-correlation (XC) functional. This mapping is, in princi-
ple, exact. However, because the exact form of the XC functional is 
unknown, approximate forms are required in practice, and the ac-
curacy of results is limited by the quality of these approximations.

The development of accurate XC functionals has been an im-
portant subject for decades (8–10). To date, researchers have pro-
posed more than 200 different XC functionals (11). Most functionals 
used today contain a few to a few dozens of empirical parameters, 
which are usually determined by fitting to datasets of molecular or 
materials properties. Many widely used XC functionals, such as those 
developed by Head-Gordon and co-workers (12–16) and the well-
known Minnesota functionals (17–20), are constructed by taking 
linear combinations of expressions inspired by existing functional 
forms [e.g., the B97 functional (21)], where the linear coefficients 
and other empirical parameters are fit to databases such as the Main 
Group Chemistry Database (MGCDB84) (15) and Minnesota Data-
base (22).

Despite great efforts, it is generally considered difficult to develop 
more accurate functionals than existing ones in a systematic man-
ner. In the past decade, researchers have devoted great efforts to 
approximate functionals using machine learning (ML) (23). One 
direction is to accelerate DFT with accurate kinetic energy func-
tional approximation or bypass the KS equations using kernel ridge 
regression (24–28) and neural networks (29–32). The other direction 
is to solve the decades-long challenge—fundamentally improving 

the accuracy of DFT with better XC functionals. Various ML tech-
niques have been applied, e.g., Bayesian error estimation (33, 34), 
linear regression with subset selection procedure (13–16), genetic 
algorithm (35), and Bayesian optimization (36). In these works, the 
functional forms are usually chosen a priori or selected from a rela-
tively rigid space of functional forms. Furthermore, many parame-
ters in these forms are linear in nature, which has the advantage of 
being easily optimizable but limits the expressive power of the func-
tional form. In contrast, neural networks are able to approximate 
any continuous function (37) and thus are flexible approximators to 
parameterize XC functionals. These neural networks can be trained 
with self-consistent DFT calculations via differentiable program-
ming (38–40), via simulated annealing (41, 42), or on converged DFT 
or beyond DFT calculations (43–45). Although neural-network XC 
functionals with more than tens of thousands of parameters can 
achieve high accuracy for particular systems, they are less explain-
able to humans, expensive to execute, and difficult to integrate to 
existing DFT codes compared to conventional human-designed 
symbolic forms.

Here, we propose a new approach to develop more accurate 
functionals—searching XC functionals in a large, nonlinear, sym-
bolic functional space based on the concept of symbolic regression. 
Unlike most ML methods where models are formulated numerically, 
symbolic regression outputs the resulting model in the symbolic 
form. Recently, there is emerging interest in the development of sym-
bolic regression methods for physical science problems (46–56). 
We illustrate our framework in Fig. 1 and denote it as Symbolic 
Functional Evolutionary Search (SyFES). One key component of 
SyFES is a symbolic representation of XC functionals based on ele-
mentary mathematical instructions and building blocks of existing 
functionals. The symbolic representation mimics the execution of 
XC functionals by computer programs, and we demonstrate that 
this representation enables efficient search of functional forms. 
Then, using a genetic algorithm called regularized evolution (57), 
we demonstrate that simple functionals such as the B97 exchange 
functional can be obtained from scratch and that more accurate 
functionals can be obtained by evolving from existing functionals. 
In particular, from a set of regularized evolution starting from the 
wB97M-V functional (15), we found a functional form, GAS22 
(Google Accelerated Science 22), with lower test error on the 
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Evolving symbolic density functionals
He Ma1, Arunachalam Narayanaswamy1, Patrick Riley1,2, Li Li1*

Systematic development of accurate density functionals has been a decades-long challenge for scientists. Despite 
emerging applications of machine learning (ML) in approximating functionals, the resulting ML functionals usually 
contain more than tens of thousands of parameters, leading to a huge gap in the formulation with the conven-
tional human-designed symbolic functionals. We propose a new framework, Symbolic Functional Evolutionary 
Search (SyFES), that automatically constructs accurate functionals in the symbolic form, which is more explain-
able to humans, cheaper to evaluate, and easier to integrate to existing codes than other ML functionals. We first 
show that, without prior knowledge, SyFES reconstructed a known functional from scratch. We then demonstrate 
that evolving from an existing functional wB97M-V, SyFES found a new functional, GAS22 (Google Accelerated 
Science 22), that performs better for most of the molecular types in the test set of Main Group Chemistry Database 
(MGCDB84). Our framework opens a new direction in leveraging computing power for the systematic develop-
ment of symbolic density functionals.

INTRODUCTION
Quantum mechanical simulations of molecules and materials are 
playing an increasingly important role in chemistry, physics, and 
materials sciences. Density functional theory (DFT) (1) has been one 
of the most successful methods for determining electronic struc-
tures of molecules and materials from first principles (2, 3) and has 
been widely used for the design and characterization of novel drugs 
(4), catalysts (5), and functional materials (6). Most DFT calculations 
performed today adopt the Kohn-Sham (KS) scheme (7). KS-DFT 
maps the challenging problem of solving the many-body Schrodinger 
equation of interacting electrons into the solution of one-body KS 
equations, with the complicated many-body effect treated with the 
exchange-correlation (XC) functional. This mapping is, in princi-
ple, exact. However, because the exact form of the XC functional is 
unknown, approximate forms are required in practice, and the ac-
curacy of results is limited by the quality of these approximations.

The development of accurate XC functionals has been an im-
portant subject for decades (8–10). To date, researchers have pro-
posed more than 200 different XC functionals (11). Most functionals 
used today contain a few to a few dozens of empirical parameters, 
which are usually determined by fitting to datasets of molecular or 
materials properties. Many widely used XC functionals, such as those 
developed by Head-Gordon and co-workers (12–16) and the well-
known Minnesota functionals (17–20), are constructed by taking 
linear combinations of expressions inspired by existing functional 
forms [e.g., the B97 functional (21)], where the linear coefficients 
and other empirical parameters are fit to databases such as the Main 
Group Chemistry Database (MGCDB84) (15) and Minnesota Data-
base (22).

Despite great efforts, it is generally considered difficult to develop 
more accurate functionals than existing ones in a systematic man-
ner. In the past decade, researchers have devoted great efforts to 
approximate functionals using machine learning (ML) (23). One 
direction is to accelerate DFT with accurate kinetic energy func-
tional approximation or bypass the KS equations using kernel ridge 
regression (24–28) and neural networks (29–32). The other direction 
is to solve the decades-long challenge—fundamentally improving 

the accuracy of DFT with better XC functionals. Various ML tech-
niques have been applied, e.g., Bayesian error estimation (33, 34), 
linear regression with subset selection procedure (13–16), genetic 
algorithm (35), and Bayesian optimization (36). In these works, the 
functional forms are usually chosen a priori or selected from a rela-
tively rigid space of functional forms. Furthermore, many parame-
ters in these forms are linear in nature, which has the advantage of 
being easily optimizable but limits the expressive power of the func-
tional form. In contrast, neural networks are able to approximate 
any continuous function (37) and thus are flexible approximators to 
parameterize XC functionals. These neural networks can be trained 
with self-consistent DFT calculations via differentiable program-
ming (38–40), via simulated annealing (41, 42), or on converged DFT 
or beyond DFT calculations (43–45). Although neural-network XC 
functionals with more than tens of thousands of parameters can 
achieve high accuracy for particular systems, they are less explain-
able to humans, expensive to execute, and difficult to integrate to 
existing DFT codes compared to conventional human-designed 
symbolic forms.

Here, we propose a new approach to develop more accurate 
functionals—searching XC functionals in a large, nonlinear, sym-
bolic functional space based on the concept of symbolic regression. 
Unlike most ML methods where models are formulated numerically, 
symbolic regression outputs the resulting model in the symbolic 
form. Recently, there is emerging interest in the development of sym-
bolic regression methods for physical science problems (46–56). 
We illustrate our framework in Fig. 1 and denote it as Symbolic 
Functional Evolutionary Search (SyFES). One key component of 
SyFES is a symbolic representation of XC functionals based on ele-
mentary mathematical instructions and building blocks of existing 
functionals. The symbolic representation mimics the execution of 
XC functionals by computer programs, and we demonstrate that 
this representation enables efficient search of functional forms. 
Then, using a genetic algorithm called regularized evolution (57), 
we demonstrate that simple functionals such as the B97 exchange 
functional can be obtained from scratch and that more accurate 
functionals can be obtained by evolving from existing functionals. 
In particular, from a set of regularized evolution starting from the 
wB97M-V functional (15), we found a functional form, GAS22 
(Google Accelerated Science 22), with lower test error on the 
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which correspond to chemical bonds with weak, metallic, and cova-
lent characters, respectively (62). In each subplot, we plot Fxc as a 
function of s = x/2(3p2)1/3 at multiple values of Wigner-Seitz radius 
rs. s is proportional to the reduced density gradient x and is a com-
mon auxiliary quantity used in literature for analyzing density func-
tionals. Normal physical systems usually have s between 0 and 3 (63). 
The Wigner-Seitz radius rs = (3/4pr)1/3 characterizes the electron den-
sity, where a larger value of rs corresponds to lower electron density. 
On the basis of the plots, one can see that the GAS22 (brown curves) 
differ from wB97M-V (gray curves) in a few regions. The first re-
gime involves small density gradient (s < 1), where Fxc of GAS22 
tends to be lower than wB97M-V. The second regime involves weak 
bonds (w = −1) and small electron density (rs = 5), where Fxc of 
GAS22 tends to be higher than wB97M-V.

After simplification, the final symbolic form of GAS22 is

   F  x   = 0.862 + 0.937u + 0.318w  (7)

   F  c−ss   = u − 4.108w − 5.242  w   2  − 1.766  u   6  + 7.538  w   4   u   6   (8)

  F  c−os   = 0.805 + 7.989  w   2  − 7.548  w   6  + 2.001  w   6   
3
 √ 
─

  x   2    − 1.761  w   2   
3
 √ 
─

  x   2     (9)

where u = gx2/(1 + gx2), similar to the B97 and the wB97M-V func-
tional, with g = 0.00384 in Fx and g = 0.469 in Fc−ss. The exchange 
enhancement factor in Eq. 7 is symbolically identical and nu-
merically similar (fig. S1, last column) to the wB97M-V functional, 
which indicates that the wB97M-V exchange enhancement factor   
F x  wB97M−V   may be accurate enough for depicting the exchange. The 
best subset selection presented in (15) only selected the three lowest- 
order terms for the definition of   F x  wB97M−V  , indicating that the 
exchange functional is easily captured by the form of two-dimensional 
power series in u and w. SyFES recognized this and maintained the 
symbolic form of the exchange functional. The same-spin correla-
tion enhancement factor in Eq. 8 still assumes the form of power 
series in two variables, but the orders are no longer those in 
wB97M-V, indicating that the symbolic regression is capable of ap-
plying minor symbolic modifications to existing forms for lower 
error. The most notable difference is found in the opposite-spin 
correlation enhancement factor in Eq. 9, which contains a novel x3/2 
term that is completely outside of the space spanned by power series 
in u and w as in Eq. 6. It highlights the power of SyFES in the discovery 
of novel functional forms from data. To assess the performance of 
the functional, we apply it to the test set of MGCDB84, which was 
not used during the training and validation of functional forms. 
The test error of GAS22 is 3.585 kcal/mol, a 15% improvement over 
the wB97M-V functional (4.237 kcal/mol).

Self-consistent calculations using GAS22
So far, all the results presented are based on non–self-consistent cal-
culations on wB97M-V densities. To evaluate the performance of 
GAS22 in realistic DFT calculations, we performed self-consistent 
field (SCF) calculations where the functional derivatives are com-
puted using automatic differentiation. Figure 5A presents the train-
ing, validation, and test errors of GAS22 after performing SCF 
calculations. SCF results are very similar to non-SCF ones, demon-
strating good numerical stability of GAS22 found by SyFES.

The training, validation, and test error were computed as 
WRMSD defined in Eq. 4, with weights reported in (15) (see Materials 

and Methods for additional details). Because the same weights were 
used to compute the training and validation errors for the develop-
ment of wB97M-V functional, we use WRMSD on the test set as 
a general summary of the overall performance. We understand the 
insufficiency of using a scalar to measure the performance of func-
tionals on diverse subsets. Therefore, to further benchmark the 
performance of GAS22 on different types of molecules, in Fig. 5 (B 
and C), we report the RMSD of the GAS22 and the wB97M-V func-
tional on subsets of MGCDB84. We see that GAS22 outperforms 
wB97M-V for most subsets. The only subset where GAS22 shows a 
less favorable RMSD than wB97M-V is the TCD [thermochemistry 
(difficult)] subset, which is composed of strongly correlated mole-
cules. The comparison between the SCF results of GAS22 and 
wB97M-V demonstrates that, despite not using SCF calculations 
during the evolution, SyFES is capable of finding functional forms 
with good performance in realistic SCF calculations.

DISCUSSION
We proposed a ML approach for developing accurate XC func-
tionals, in contrast to conventional human-designed symbolic func-
tionals and other ML-generated numerical functionals. SyFES can 
automatically search functionals that best fit the given dataset from 
a large, nonlinear, symbolic functional space. As demonstrated, it is 
capable of finding simple existing functionals from scratch, as well 
as evolving an existing functional to a better performing functional. 
Despite the fact that the search procedure is conducted by com-
puters, it is worth noting that the form of functionals produced by 
SyFES has similar simplicity as functionals designed by humans in 
the past few decades—symbolic forms with a manageable amount 
of parameters. Thus, they are amenable to all the interpretation 
methods scientists developed to examine the properties of function-
als and understand their limitations. Meanwhile, the computational 
cost to use and the work to implement these functionals in popular 
libraries such as Libxc (64) are also the same as the conventional 
functionals on the same level of Jacob’s ladder (65). SyFES is ML ap-
plied to developing human-readable scientific expressions and not 
just a blackbox prediction.

Given the ubiquity of DFT in quantum simulations, we expect 
many applications along this direction in chemistry, physics, and 
materials sciences. This work focused on main-group chemistry 
using the data from the MGCDB84 dataset. However, the frame-
work itself is general and can be applied to more systems via incor-
porating a new dataset, objective function, and search space. The 
design of SyFES is highly scalable on computer clusters and cloud 
platforms, where the mutation, training, and validation of new func-
tionals are distributed into different workers asynchronously. In 
this work, we used up to 50 workers, but it can easily be scaled up to 
leverage more computing power to deal with a larger search space 
for more demanding problems. We conclude with a list of promis-
ing future workstreams: (i) Better dataset. It has been proved many 
times that high-quality and comprehensive datasets are critical to 
the development and benchmarking of ML algorithms for target 
applications. For example, ImageNet (66) spawned the revolution 
of ML in computer vision. This area is underinvested for the ML 
DFT community. (ii) Refined methodology. Starting from the re-
sults here, SyFES can be further improved in multiple dimensions, 
e.g., search space design, feature engineering, regularization via 
numerical techniques, symbolic constraints, or adding density 
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LAMMPS simulation

• CdSe being shocked using LAMMPS

• Recently, saw movie from Aidan Thompson of 
C being shocked with 18 billion atoms in ML 
potential
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(Contact: Aidan Thompson, 1435)

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin 
Company, for the United States Department of Energy under contract DE-AC04-
94AL85000.

      Rocksalt (blue) & FCT (red) mixed phase                                        FCT phase (red)                 Wurzite phase (grey)
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Breakthrough paper?
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We have developed a deep generative model, generative tenso-
rial reinforcement learning (GENTRL), for de novo small-mole-
cule design. GENTRL optimizes synthetic feasibility, novelty, 
and biological activity. We used GENTRL to discover potent 
inhibitors of discoidin domain receptor 1 (DDR1), a kinase tar-
get implicated in fibrosis and other diseases, in 21 days. Four 
compounds were active in biochemical assays, and two were 
validated in cell-based assays. One lead candidate was tested 
and demonstrated favorable pharmacokinetics in mice.

Drug discovery is resource intensive, and involves typical time-
lines of 10–20 years and costs that range from US$0.5 billion to 
US$2.6 billion1,2. Artificial intelligence promises to accelerate this 
process and reduce costs by facilitating the rapid identification of 
compounds3,4. Deep generative models are machine learning tech-
niques that use neural networks to produce new data objects. These 
techniques can generate objects with certain properties, such as 
activity against a given target, that make them well suited for the 
discovery of drug candidates. However, few examples of generative 
drug design have achieved experimental validation involving syn-
thesis of novel compounds for in vitro and in vivo investigation5–16.

Discoidin domain receptor 1 (DDR1) is a collagen-activated pro-
inflammatory receptor tyrosine kinase that is expressed in epithelial 
cells and involved in fibrosis17. However, it is not clear whether DDR1 
directly regulates fibrotic processes, such as myofibroblast activa-
tion and collagen deposition, or earlier inflammatory events that 
are associated with reduced macrophage infiltration. Since 2013, at 
least eight chemotypes have been published as selective DDR1 (or 
DDR1 and DDR2) small-molecule inhibitors (Supplementary Table 
1). Recently, a series of highly selective, spiro-indoline-based DDR1 
inhibitors were shown to have potential therapeutic efficacy against 
renal fibrosis in a Col4a3–/– mice model of Alport syndrome18. A 
wider diversity of DDR1 inhibitors would therefore enable further 
basic understanding and therapeutic intervention.

We developed generative tensorial reinforcement learning 
(GENTRL), a machine learning approach for de novo drug design. 
GENTRL prioritizes the synthetic feasibility of a compound, its 
effectiveness against a given biological target, and how distinct it 
is from other molecules in the literature and patent space. In this 
work, GENTRL was used to rapidly design novel compounds that 
are active against DDR1 kinase. Six of these compounds, each  
complying with Lipinski’s rules1, were designed, synthesized, and 

experimentally tested in 46 days, which demonstrates the potential of 
this approach to provide rapid and effective molecular design (Fig. 1a).

To create GENTRL, we combined reinforcement learning, varia-
tional inference, and tensor decompositions into a generative two-
step machine learning algorithm (Supplementary Fig. 1)19. First, we 
learned a mapping of chemical space, a set of discrete molecular 
graphs, to a continuous space of 50 dimensions. We parameterized the 
structure of the learned manifold in the tensor train format to use par-
tially known properties. Our auto-encoder-based model compresses 
the space of structures onto a distribution that parameterizes the 
latent space in a high-dimensional lattice with an exponentially large 
number of multidimensional Gaussians in its nodes. This parameter-
ization ties latent codes and properties, and works with missing values 
without their explicit input. In the second step, we explored this space 
with reinforcement learning to discover new compounds.

GENTRL uses three distinct self-organizing maps (SOMs) as 
reward functions: the trending SOM, the general kinase SOM, and 
the specific kinase SOM. The trending SOM is a Kohonen-based 
reward function that scores compound novelty using the applica-
tion priority date of structures that have been disclosed in patents. 
Neurons that are abundantly populated with novel chemical entities 
reward the generative model. The general kinase SOM is a Kohonen 
map that distinguishes kinase inhibitors from other classes of mol-
ecules. The specific kinase SOM isolates DDR1 inhibitors from the 
total pool of kinase-targeted molecules. GENTRL prioritizes the 
structures it generates by using these three SOMs in sequence.

We used six data sets to build the model: (1) a large set of mole-
cules derived from a ZINC data set, (2) known DDR1 kinase inhibi-
tors, (3) common kinase inhibitors (positive set), (4) molecules that 
act on non-kinase targets (negative set), (5) patent data for biologi-
cally active molecules that have been claimed by pharmaceutical 
companies, and (6) three-dimensional (3D) structures for DDR1 
inhibitors (Supplementary Table 1). Data sets were preprocessed to 
exclude gross outliers and to reduce the number of compounds that 
contained similar structures (see Methods).

We started to train GENTRL (pretraining) on a filtered ZINC 
database (data set 1, described earlier), and then continued train-
ing using the DDR1 and common kinase inhibitors (data set 2 and 
data set 3). We then launched the reinforcement learning stage 
with the reward described earlier. We obtained an initial output 
of 30,000 structures (Supplementary Data Set), which were then  

Deep learning enables rapid identification of 
potent DDR1 kinase inhibitors
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A feedback loop?

• Serious ML funding is 100 x bigger than 
electronic structure funding

• ML is eager for new applications in new 
domains

• Electronic structure is eager for resources
• Do a little ML in DFT, get 10 x usual money
• With 10 x usual money, triple the size of your 

elec struc group
• With triple ML output, ask for more ML money
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Paola Gori-Giorgi

• Highly respected cond matter and 
quantum chemistry theorist

• DFT developer
• Postdoc with Perdew and Andeas Savin
• Full Prof at VU Amsterdam
• Quit for Microsoft AI for Science in Nov 

2022
• Says working conditions much better 

there
• Has hired several former group 

members

Kieron Burke ML for DFT 37

37

Summary

• Kohn-Sham regularizer, using both energy and 
density losses and full differential 
programming, is very efficient way to learn 
chemical accuracy for strong correlation with 
minimal data.

• Also works to generate good functional for 
weakly-correlated systems.

• Challenge: Avoid using every point in the 
system as input.

• Thanks to NSF and DOE for funding.
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