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Topics

• Ground-state DFT:
– DCDFT
– Strong correlation
– Semiclassics: orbital free

• Excitations: 
– optical versus quasiparticle
– GKS versus KS
– Ensemble DFT
– Connection to GF

• Warm dense matter
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A. ground-state DFT
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DC-DFT

• True error: functional error plus density-driven 
error

• Find many molecular cases where density-
driven error dominates.

• Often simply use HF density instead.
• Led by Eunji Sim, Yonsei University
• About 20 papers showing benefits (reducing 

errors)
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DC-DFT
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ABSTRACT: Density functional theory (DFT) calculations have become widespread in both chemistry and materials, because they
usually provide useful accuracy at much lower computational cost than wavefunction-based methods. All practical DFT calculations
require an approximation to the unknown exchange-correlation energy, which is then used self-consistently in the Kohn−Sham
scheme to produce an approximate energy from an approximate density. Density-corrected DFT is simply the study of the relative
contributions to the total energy error. In the vast majority of DFT calculations, the error due to the approximate density is
negligible. But with certain classes of functionals applied to certain classes of problems, the density error is sufficiently large as to
contribute to the energy noticeably, and its removal leads to much better results. These problems include reaction barriers, torsional
barriers involving π-conjugation, halogen bonds, radicals and anions, most stretched bonds, etc. In all such cases, use of a more
accurate density significantly improves performance, and often the simple expedient of using the Hartree−Fock density is enough.
This Perspective explains what DC-DFT is, where it is likely to improve results, and how DC-DFT can produce more accurate
functionals. We also outline challenges and prospects for the field.

■ INTRODUCTION
Density functional calculations have become ubiquitous in
modern chemistry and materials science since the award of the
1998 Nobel Prize in Chemistry.1 There are now many
computer codes available for performing such calculations.2−7

It is a straightforward matter to choose a basis set and an
approximate functional, and calculate an interesting property,
such as a reaction barrier, bond length, or dipole moment. But
it requires judgment and experience to choose wisely.8

Ensuring the quantity is converged with respect to basis is
relatively simple. Given hundreds of possible DFT approx-
imations available in a code, the choice can be difficult.9

There are myriad approaches to constructing exchange-
correlation (XC) approximations, varying from appeals to
general principles of quantum mechanics to fits to large
databases.10−13 Modern approximations include generalized
gradient approximations (GGA), hybrids, range-separated
functionals, the random phase approximation and variants
thereof, dispersion corrections of at least three distinct flavors,
double-hybrids, and many, many more.11,14−16 All over the
world, theorists of many different backgrounds work at
improving (or at least, expanding) on our current choices,
either with improved accuracy, lower computational cost, or
greater reliability.17

In each of the countless DFT calculations performed
worldwide each year, the Kohn−Sham (KS) equations18 are
iterated to a self-consistent (SC) electronic density and
orbitals, and the total energy of the system is reconstructed
with these final quantities. By definition, this process finds the
unique19 density that minimizes the approximate energy. All
components of that energy are exactly determined, apart from
the notorious XC energy. It is that piece which is approximated

in DFT and whose derivative appears in the KS equations as
the XC potential.
Thus, whatever choice of XC is made, it is actually used

twice in the calculation. Once in finding the density and a
second time in finding the energy, so that neither is quite
correct. As the foundation of DFT is to consider the energy as
a functional of the density,19 we may write the error in any self-
consistent KS calculation as

Δ = [̃ ]̃ − [ ]E E n E n (1)

where n(r) is the exact density and E[n] is the exact functional,
while tildes denote approximate quantities. In most practical
calculations, modern XC approximations yield excellent
approximate densities,20 so that the energy error would barely
change if the approximation were evaluated on the exact
density.
It is certainly extremely convenient to use the self-consistent

solution density. It is easily computed from the KS equations.
By being self-consistent, many important properties, especially
those depending on derivatives of the energy, are much simpler
and many additional terms need not be calculated. This is so
convenient that essentially all modern codes use the self-
consistent density in almost all circumstances. However, this
was not always so. In the earliest days, the Hartree−Fock (HF)
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Weak versus strong correlation

• Weakly correlated materials typically have 
exact spectral function looking quite like KS 
spectral function

• Often overlap of true wavefunction with KS 
wavefunction about 0.9 (per cell).

• For strongly correlated system, this is no longer 
true.

• But this does not necessarily imply gsDFT is 
with standard approximations fails.
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Strong correlation

• Many materials are strongly correlated, 
especially those DOE cares about.

• Traditional functionals appear to fail in such 
cases. Maybe.

• Most molecules at equilibrium are weakly 
correlated.

• As you stretch any molecule, its correlations 
become strong.

• Often DFT will break symmetry, see recent 
work of Zunger and Perdew
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Lies
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Many-body book
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Understanding the KS idea

• Correl 21 book chapter

• Ground-state review:

• Linear-response TDDFT review:

• General intro to DFT in real-space:
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DFT in a nutshell, Kieron Burke, Lucas O. Wagner, 
Int. J. Quant. Chem. 113, 96-101 (2013). 

The Hubbard dimer: a density func4onal case study of a many-body 
problem D J Carrascal  D.J., Ferrer, J., Smith, J. and KB 2015 J. Phys.: 
Condens. Ma2er 27 393001

Linear response time-dependent density functional 
theory of the Hubbard dimer Carrascal, D.J., Ferrer, J., Maitra, 
N. and KB. Linear response time-dependent density functional theory 
of the Hubbard dimer. Eur. Phys. J. B 91, 142 (2018). 

Lies My Teacher Told Me About Density Functional Theory: Seeing Through Them with the Hubbard 
Dimer K. Burke and J. Kozlowski. In: E. Pavarini and E. Koch (eds.) Simulating Correlations on Computers: 
Modeling and Simulation, Vol. 11. Verlag des Forschungszentrum Jülich (2021). ISBN 978-3-95806-529-1
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KS gap
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Fundamental gap
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Hubbard Dimer: The fundamental gap 13 of 44

Then Egs does not match the true gap, even with the exact
XC functional[SP08; BGM13]. We write

Eg = Egs +�XC (70)

where �XC 6= 0, and is called the derivative discontinuity
contribution to the gap (for reasons that will be more appar-
ent later)[Pb85; Pb86]. In general, �XC appears to always
be positive, i.e., the KS gap is smaller than the true gap.
In semiconductors with especially small gaps, such as ger-
manium, approximate KS gaps are often zero, making the
material a band metal, but an insulator in reality. The classic
example of a chain of H atoms becoming a Mott-Hubbard
insulator when the bonds are stretched is demonstrated
unambiguously in Ref. [SWWB12].

While this mismatch occurs for all systems, it is especially
problematic for DFT calculations of insulating solids. For
molecules, one can (and does) calculate the gap (called the
chemical hardness in molecular systems[PY89]) by adding
and removing electrons. But with periodic boundary con-
ditions, there is no simple way to do this for solids. Even
with the exact functional, the KS gap does not match the
true gap, and there’s no easy way to calculate Eg in a
periodic code. In fact, popular approximations like LDA
and GGA mostly produce good approximations to the KS
gap, but yield �XC = 0 for solids. Thus there is no easy
way to extract a good approximation to the true gap in
such DFT calculations. The standard method for producing
accurate gaps for solids has long been to perform a GW
calculation[AG98], an approximate calculation of the Green’s
function, and read o↵ its gap. This works very well for
most weakly correlated materials[SKF06]. Such calculations
are now done in a variety of ways, but usually employ KS
orbitals from an approximate DFT calculation. Recently,
hybrid functionals like HSE06[HSE06] have been shown to
yield accurate approximate gaps to many systems, but these
gaps are a mixture of the quasiparticle (i.e., fundamental)
gap, and the KS gap. Their exchange component produces
the fundamental gap at the HF level, which is typically a
significant overestimate, which then compensates for the
‘too small’ KS gap. While this balance is unlikely to be
accidental, no general explanation has yet been given.

B. Hubbard dimer gap

For our half-filled Hubbard dimer, we can easily calculate
both the N±1-electron energies, the former via particle-hole
symmetry from the latter[CFb12]. In Fig. 11, we plot �I,
�A, ✏HOMO, and ✏LUMO for U = 1 when 2 t = 1, as a
function of �v. We see that A (and even sometimes I)
can be negative here. (This cannot happen for real-space
calculations, as electrons can always escape to infinity, so
a bound system always has A � 0.) The HOMO level is
always at �I according to Eq. (68) but the LUMO is not at
�A. Here it is smaller than �A, and we find this result for
all values of U and �v. The true gap is I �A, but the KS
gap is ✏LUMO + I, which is always smaller. Thus �XC � 0,
just as for real systems.

FIG. 11. Plot of �A, �I, ✏HOMO, and ✏LUMO as a function
of �v with U = 1 and 2 t = 1.

FIG. 12. Plot of �A, �I, ✏HOMO, and ✏LUMO as a function
of �v with U = 5 and 2 t = 1.

Fig. 11 is typical of weakly correlated systems, where �XC

is small but noticeable. In Fig. 12, we repeat the calculation
with U = 10 t, where now Eg � Egs at �v = 0, but we
still see the di↵erence become tiny when �v > U . In both
figures, �XC is the di↵erence between the red line and the
green dashed line. In all cases, �XC � 0, and this has always
been found to be true in real-space DFT, but has never been
proven in general.

C. Green’s functions

To end this section, we emphasize the di↵erence between
the KS and many-body approaches to this problem by cal-
culating their spectral functions[ORR02]. We define the
many-body retarded single-particle Green’s function as

Gij��0(t�t0) = �i ✓(t�t0)h 0|{ĉi�(t), ĉ†j�0(t0)} | 0i (71)

Hubbard Dimer: The fundamental gap 12 of 44

pushes the two occupation numbers closer, and so their KS
on-site potential di↵erence is smaller. Again, the red curve
is larger in magnitude than the green, showing that HF does
not suppress the density di↵erence quite enough. In our final
panel, U = 20 t, and the e↵ects of strong correlation are
clear. Now there is a huge di↵erence between black and
blue curves. Because U is so strong, the density di↵erence is
close to zero for most n1, making the blue curve almost flat
except at the edges. In the KS scheme, this is achieved by
the red curve being almost flat, except for a sudden change
of sign near n1 = 1. These e↵ects give rise to the �vS

values shown in Fig. 2. This e↵ect is completely missed in
HF.

FIG. 10. Plot of �vC for di↵erent U and 2 t = 1.

To emphasize the role of correlation, in Fig. 10, we
plot the correlation potential alone, which is the di↵erence
between the red and green curves in Fig. 9. Values from
the blue curves for �v = 2 were used to make Fig. 2. �vC

is an odd function of n1. In the weak- and strong-coupling
limits we can write down simple expressions for �vC (see
B 2):

�vC ⇡ 5U2�n

32 t
(1� (�n/2)2)3/2 (U ⌧ 2 t) (61)

�vC ⇡ U(1� |�n/2|) sgn(�n) (U � 2 t). (62)

These correspond to the 1st and 4th panels in Fig. 10. For
small U , it is of order U2 (see B), and has little e↵ect. As
U increases, it becomes proportional to U , and becomes
almost linear in U , with a large step near n1 = 1. If we
now compare this figure with Fig. 8, we see that it is simply
the derivative of the previous EC(n1) curve, as stated in Eq.
(60).

The self-consistent KS equations, Eqs. (57) and (58),
have, in this case, precisely the same form as those of
restricted HF (or mean-field theory), Eqs. (26) and (36),
but with whatever additional dependence on n1 occurs due
to �vC(n1). When converged, the ground-state energy is
found simply from:

E(n1) = TS(n1) + Vext(n1) + UH(n1) + EXC(n1). (63)

The energy can alternatively be extracted from the KS orbital
energy via Eq. (16):

E = 2✏S + (EC ��vC�n/2� EHX), (64)

where the second term is the double-counting correction.
But note the crucial di↵erence here. We consider HF an
approximate solution to the many-body problem whereas
DFT, with the exact correlation function(al), yields the
exact energy and on-site occupation, but not the exact
wavefunction.

4. THE FUNDAMENTAL GAP

Now that we have carefully defined what exact KS DFT
is for this model, we immediately apply this knowledge to
investigate a thorny subject on the border of many-body
theory and DFT, namely the fundamental gap of a system.

A. Background in real space

Begin with the ionization energy of an N -electron system:

I = E(N � 1)� E(N) (65)

is the energy required to remove one electron entirely from
a system. We can then define the electron a�nity as the
energy gained by adding an electron to a system, which is
also equal to the ionization energy of the (N + 1)-electron
system:

A = E(N)� E(N + 1). (66)

In real-space, I and A � 0. For systems which do not bind
an additional electron, such as the He atom, A = 0. The
charge, or fundamental, gap of the system is then

Eg = I �A, (67)

and for many materials, Eg can be used to decide if they are
metals (Eg = 0) or insulators (Eg > 0)[K64]. The spectral
function of the single-particle Green’s function has a gap
equal to Eg. For Coulombic matter, Eg has always been
found to be non-negative, but no general proof has been
given.
Now we turn to the KS system of the N -electron sys-

tem. We denote the highest occupied (molecular) orbital as
✏HOMO and the lowest unoccupied one as ✏LUMO. Then the
DFT version of Koopmans’ theorem[PPLB82; PL83; SS83;
AP84; AB85; CVU10] shows that

✏HOMO = �I, (68)

by matching the decay of the density away from any finite
system in real space, in the interacting and KS pictures.
However, this condition applies only to the HOMO, not to
any other occupied orbitals, or unoccupied ones. The LUMO
level is not at �A, in general. Define the KS gap as

Egs = ✏LUMO � ✏HOMO. (69)
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where the second term is the double-counting correction.
But note the crucial di↵erence here. We consider HF an
approximate solution to the many-body problem whereas
DFT, with the exact correlation function(al), yields the
exact energy and on-site occupation, but not the exact
wavefunction.

4. THE FUNDAMENTAL GAP

Now that we have carefully defined what exact KS DFT
is for this model, we immediately apply this knowledge to
investigate a thorny subject on the border of many-body
theory and DFT, namely the fundamental gap of a system.

A. Background in real space

Begin with the ionization energy of an N -electron system:

I = E(N � 1)� E(N) (65)

is the energy required to remove one electron entirely from
a system. We can then define the electron a�nity as the
energy gained by adding an electron to a system, which is
also equal to the ionization energy of the (N + 1)-electron
system:

A = E(N)� E(N + 1). (66)

In real-space, I and A � 0. For systems which do not bind
an additional electron, such as the He atom, A = 0. The
charge, or fundamental, gap of the system is then

Eg = I �A, (67)

and for many materials, Eg can be used to decide if they are
metals (Eg = 0) or insulators (Eg > 0)[K64]. The spectral
function of the single-particle Green’s function has a gap
equal to Eg. For Coulombic matter, Eg has always been
found to be non-negative, but no general proof has been
given.
Now we turn to the KS system of the N -electron sys-

tem. We denote the highest occupied (molecular) orbital as
✏HOMO and the lowest unoccupied one as ✏LUMO. Then the
DFT version of Koopmans’ theorem[PPLB82; PL83; SS83;
AP84; AB85; CVU10] shows that

✏HOMO = �I, (68)

by matching the decay of the density away from any finite
system in real space, in the interacting and KS pictures.
However, this condition applies only to the HOMO, not to
any other occupied orbitals, or unoccupied ones. The LUMO
level is not at �A, in general. Define the KS gap as

Egs = ✏LUMO � ✏HOMO. (69)
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Then Egs does not match the true gap, even with the exact
XC functional[SP08; BGM13]. We write

Eg = Egs +�XC (70)

where �XC 6= 0, and is called the derivative discontinuity
contribution to the gap (for reasons that will be more appar-
ent later)[Pb85; Pb86]. In general, �XC appears to always
be positive, i.e., the KS gap is smaller than the true gap.
In semiconductors with especially small gaps, such as ger-
manium, approximate KS gaps are often zero, making the
material a band metal, but an insulator in reality. The classic
example of a chain of H atoms becoming a Mott-Hubbard
insulator when the bonds are stretched is demonstrated
unambiguously in Ref. [SWWB12].

While this mismatch occurs for all systems, it is especially
problematic for DFT calculations of insulating solids. For
molecules, one can (and does) calculate the gap (called the
chemical hardness in molecular systems[PY89]) by adding
and removing electrons. But with periodic boundary con-
ditions, there is no simple way to do this for solids. Even
with the exact functional, the KS gap does not match the
true gap, and there’s no easy way to calculate Eg in a
periodic code. In fact, popular approximations like LDA
and GGA mostly produce good approximations to the KS
gap, but yield �XC = 0 for solids. Thus there is no easy
way to extract a good approximation to the true gap in
such DFT calculations. The standard method for producing
accurate gaps for solids has long been to perform a GW
calculation[AG98], an approximate calculation of the Green’s
function, and read o↵ its gap. This works very well for
most weakly correlated materials[SKF06]. Such calculations
are now done in a variety of ways, but usually employ KS
orbitals from an approximate DFT calculation. Recently,
hybrid functionals like HSE06[HSE06] have been shown to
yield accurate approximate gaps to many systems, but these
gaps are a mixture of the quasiparticle (i.e., fundamental)
gap, and the KS gap. Their exchange component produces
the fundamental gap at the HF level, which is typically a
significant overestimate, which then compensates for the
‘too small’ KS gap. While this balance is unlikely to be
accidental, no general explanation has yet been given.

B. Hubbard dimer gap

For our half-filled Hubbard dimer, we can easily calculate
both the N±1-electron energies, the former via particle-hole
symmetry from the latter[CFb12]. In Fig. 11, we plot �I,
�A, ✏HOMO, and ✏LUMO for U = 1 when 2 t = 1, as a
function of �v. We see that A (and even sometimes I)
can be negative here. (This cannot happen for real-space
calculations, as electrons can always escape to infinity, so
a bound system always has A � 0.) The HOMO level is
always at �I according to Eq. (68) but the LUMO is not at
�A. Here it is smaller than �A, and we find this result for
all values of U and �v. The true gap is I �A, but the KS
gap is ✏LUMO + I, which is always smaller. Thus �XC � 0,
just as for real systems.

FIG. 11. Plot of �A, �I, ✏HOMO, and ✏LUMO as a function
of �v with U = 1 and 2 t = 1.

FIG. 12. Plot of �A, �I, ✏HOMO, and ✏LUMO as a function
of �v with U = 5 and 2 t = 1.

Fig. 11 is typical of weakly correlated systems, where �XC

is small but noticeable. In Fig. 12, we repeat the calculation
with U = 10 t, where now Eg � Egs at �v = 0, but we
still see the di↵erence become tiny when �v > U . In both
figures, �XC is the di↵erence between the red line and the
green dashed line. In all cases, �XC � 0, and this has always
been found to be true in real-space DFT, but has never been
proven in general.

C. Green’s functions

To end this section, we emphasize the di↵erence between
the KS and many-body approaches to this problem by cal-
culating their spectral functions[ORR02]. We define the
many-body retarded single-particle Green’s function as

Gij��0(t�t0) = �i ✓(t�t0)h 0|{ĉi�(t), ĉ†j�0(t0)} | 0i (71)

Exci.ng Tutorial advanced DFT
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Conditional Probability-DFT

• Alternative to KS-DFT
• Calculate the pair-density at every 

point in system by finding conditional 
probability at each point via a KS 
calculation

• Gets uniform gas right for all 
temperatures

• Dissociates H2 and any H chain 
correctlyKieron Burke Exci.ng Tutorial advanced DFT 13

Conditional probability density 
functional theory R . Pederson, J. 
Chen, S. White, and K. Burke, Phys. 
Rev. B  105, 245138 (2022). 

Bypassing the Energy Func@onal in Density 
Func@onal Theory: Direct Calcula@on of 
Electronic Energies from Condi@onal 
Probability Densi@es R. McCarty, D. Perchak, 
R. Pederson, R. Evans, Y. Qiu, S. White, and K. 
Burke, Phys. Rev. Le7. 125, 266401 (2020). 

Ryan Pederson Dennis Perchak
Ryan J McCarty

Steve White

Correlation energy of the uniform 
gas determined by ground state 
conditional probability density 
functional theory D . Perchak, R . 
McCarty, and K. Burke, Phys. Rev. B 
105, 165143 (2022).
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Orbital-free DFT

• If we knew TS[n] and its functional derivative, 
we could by-pass the need to solve KS 
equations.

• Likely limiting cost becomes Poisson solver
• TF theory has this form
• In 100 years, no-one has been able to do this
• Harder than XC, as TS much bigger and need to 

create quantum shell structure
• See recent papers with Michael Berry.

Kieron Burke Exci.ng Tutorial advanced DFT 14
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Orbital-free DFT in 3D

• Use slabs that are uniform in perp directions
• Analysis is more complicated but 

straightforward
• Poschl-Teller slab with filled bands

• P Okun and KB, in preparation.

Kieron Burke Exciting Tutorial advanced DFT 15

Deriving Density Functionals

Error
T T TF TTF[⇢] GEA MGE2 T (2) T (4)

0.06631 0.00121 �0.00382 �0.00087 �0.0000199 �0.00114 0.0000694

TABLE II. The exact PTW slab energy and it’s various approximations for D = 1. This well allows only one closed band with
µ = D = 1. The headings have the same definitions as in Table I. T (4) is a numerical estimate of the 4th order kinetic energy
functional. This numerical calculation retains higher order contaminants which are absent in the exact 4th order functional–in
other words the actual functional would probably give an even lower error.

Error
M µ/D T T TF TTF[⇢] GEA MGE2 T (2) T (4)

1 0.41332 6.83530 0.69488 �0.35373 �0.09933 �0.02556 0.04840 0.00022
2 0.63054 26.98627 0.76086 �0.47493 �0.08953 0.02224 0.05235 0.00031
3 0.79775 57.49820 0.63855 �0.49398 �0.05655 0.07031 0.03967 0.00028
4 0.91496 89.80096 0.43912 �0.46514 �0.02701 0.10005 0.01965 0.00025
5 0.98218 113.52877 0.26432 �0.42937 �0.01064 0.11079 0.00154 0.00014

TABLE III. Same as Table II but for D = 20. Since this well can accommodate several closed bands I give the ratio of the
chemical potential over the well depth, µ/D for each closed band. T (4) is the fourth order kinetic energy functional calculated
numerically.

Error
D M T T TF TTF[⇢] GEA MGE2 T (2) T (4)

12.685 1 3.954 0.377 �0.201 �0.054 �0.011 0.032 �0.0000029
36.000 2 56.956 1.813 �1.040 �0.227 0.009 0.097 0.0000491
70.971 3 315.673 5.028 �2.964 �0.568 0.127 0.196 0.0000716

117.599 4 1122.721 10.732 �6.427 �1.117 0.424 0.328 0.0000842
175.883 5 3081.049 19.637 �11.886 �1.909 0.984 0.495 0.0000922
245.824 6 7128.315 32.453 �19.800 �2.979 1.899 0.696 0.0000978
327.422 7 14611.270 49.893 �30.630 �4.359 3.260 0.930 0.0001019
420.677 8 27360.139 72.666 �44.841 �6.077 5.165 1.199 0.0001050
525.589 9 47762.995 101.486 �62.897 �8.163 7.711 1.501 0.0001075
642.157 10 78840.146 137.062 �85.264 �10.644 10.997 1.838 0.0001095

TABLE IV. We show that if we keep µ/D fixed (in this case µ/D = 1/2) and increase the well depth and number of closed
bands (M) our second order kinetic energy functional, in Eq. X, beats out every other approximation. The headings have the
same definitions as in Table I. T (4) is the fourth order kinetic energy functional calculated numerically.

14

Pavel Okun

Orbital-free func@onal with sub-milliHartree errors for slabs P. Okun, A. Cancio, and K. Burke, (2023). arXiv: 
2304.11115
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B Excitations
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Excitations in electronic structure

• Optical excitations:  
– Eigenvalue differences of the N-electron system
– See in light absorption spectrum
– Poles of density-density response function
– Linear response TDDFT gives access

• Quasiparticle excitations: 
– Transitions between N and N±1 electrons
– See in photoemission/absorption spectrum
– Poles of many-body Greens function
– GW gives these (and BSE recovers optical spectrum)

Kieron Burke Exciting Tutorial advanced DFT 17
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KS excitations

• Imagine you do a gs DFT calculation with the 
exact functional

• Gives occupied and unoccupied eigenvalues
• Differences are KS transitions, yielding KS 

spectrum
• For weakly correlated systems, these look 

roughly like either optical or quasiparticles 
(except for gap)

• But need to convert to either optical or 
quasiparticle spectrum

Kieron Burke Exci.ng Tutorial advanced DFT 18
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Spectral functions, real and KS

Kieron Burke Exciting Tutorial advanced DFT 19

3.3 Mind the gap DFT on Hubbard Dimer

FIG. 9. Spectral function of the symmetric dimer for U = 1
and �v = 0. The physical MB peaks are plotted in blue, the
KS in red. Here I = 0.1, A = �1.1, and "LU = 0.9.

FIG. 10. Same as Fig. 9, but now U = 5. Here I = �0.3,
A = �4.7, and "LU = 1.3. Note that the KS gap remains
unchanged by the alteration of U because �n = 0 in both
cases.

On the other hand, Fig. 10 shows the same system with
a larger U value. Now the strong KS peaks are not in the
right place and are noticeably too large. Moreover, the blue
peaks with no KS analogs are a substantial contribution.
Finally, in the inhomogeneous case, the potential asymmetry
overcomes the e↵ects of the Hubbard U. In Fig. 11, we see
that for �v = 2 and U = 1, the KS spectral function is
almost identical to the true one.

Lastly, we finish this section illustrating the relevance of
this discussion to the thermodynamic limit. The canonical
example of the Mott-Hubbard transition is a chain (or
lattice) of H atoms. Each atom has one electron, so the
bands of the KS potential are always half-filled, with no gap
at the Fermi energy. Thus the gap is always zero and the KS
band structure suggests it’s a metal. This may be true at

FIG. 11. Same as Fig. 9, but now U = 1, �v = 2. Here
I = 0.27, A = �1.27, and "LU = 1.25.

FIG. 12. Exact gaps for chains of N soft hydrogen atoms
with atomic separation b = 4 (error bars are less than symbol
sizes). The upper curve is a quadratic fit of exact gaps of the
largest six systems and extrapolates to a finite value Eg ⇡
0.33. The exact Kohn-Sham gaps, in contrast, extrapolate to
zero showing that for N ! 1 the true KS system is metallic
(lower curve is a linear fit of exact KS gaps of the largest six
systems). Taken from Reference [46].

moderate separations of the atoms, but as the separation
is increased, the electrons must localize on atoms, and it
must become a Mott insulator.
Fig. 12 shows the gap, calculated for chains of well-

separated 1D H atoms of increasing length [46]. By
performing the calculation with finite systems, i.e., without
periodic boundary conditions, we calculate the gap for each
N by adding and removing electrons, as in Eq. (20), and
then take the limit as N ! 1. On the other hand, we
extract the exact ground-state density from our DMRG
calculation at each N, and find the corresponding exact KS
potential for each N. We could then as easily extrapolate
the KS gap, from the HO and LU, showing that indeed
the KS gap vanishes in the thermodynamic limit – exactly

9
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Three gaps:  All ‘HOMO-LUMO’

• Fundamental (or charge) gap:  (I=24.6 eV for He)
– Voltage needed to get solid to conduct.
– Can also be found from I-A, but tricky for periodic codes
– AKA quasiparticle gap, well-approximated by GW, seen 

in photoemission. experiments
• Optical gap: (1s->2s singlet in He, 20.6 eV)

– Lowest excitation by light, without changing N
– Matches fundamental gap if no excitons

• Kohn-Sham gap: (1s->2s in He, 20.3 eV)
– Energy difference between KS HOMO and LUMO for 

neutral system
– Typically a great underestimate of I-A for solids

Kieron Burke Exci.ng Tutorial advanced DFT 20
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Green’s function approaches

• Exact Greens function gives quasiparticle 
excitations

• Start from non-interacting G 
– Add Hartree, gives GHF 
– Add all many-body diagrams, get exact G

• For weakly-correlated systems:
– Some flavor of GW
– Green’s function methods

• For strongly correlated systems:
– Dynamical mean field theory
– Poor man’s version: DFT + U

Kieron Burke Exci.ng Tutorial advanced DFT 21
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Mott-Hubbard gap

• Classic prototype of 
condensed matter

• Infinite chain of H atoms
• When lattice spacing is 

large, must be an 
insulator

• But with one electron 
per site, always a band 
metal

interacting system, the KS system is the unique noninter-
acting system with the same density [20].) In the thermo-
dynamic limit, the KS gaps extrapolate to zero, so that
the exact N ! 1 KS system is a metal. This is consistent
with the fact that each finite KS system in Fig. 3 has one
electron per unit cell and thus a half-filled band (in contrast
to the unrestricted LSDAwhich breaks spin symmetry for
this system).

The discrepancy between the KS and exact gap was long
ago identified [21] with the exchange-correlation deriva-
tive discontinuity in DFT: Eg ¼ !s þ !XC, where !s is
the KS gap, that is, the energy difference between the
lowest unoccupied and highest occupied orbitals of the
neutral KS system. Approximate functionals such as
LSDA that are continuous in particle number miss this
effect entirely. The LSDA KS gaps are almost identical
to the exact ones shown in Fig. 3, but the LSDA funda-
mental gap drops from close to Eg for small N to near zero
at large N (details reported elsewhere).

Previous calculations have found !XC for semiconduc-
tors [22,23] with finite KS gaps !s, but our system’s gap is
entirely due to !XC, underscoring its importance for strong
correlation physics. Our results rely on no uncontrolled
approximations and so demonstrate unambiguously the
behavior of Mott insulators in DFT. Present DFT research
on this issue focuses on extracting accurate Eg from semi-
local functional calculations [24,25].

The onset of strong correlation with increasing bond
length is often identified with the Coulson-Fischer point
[26], where an unrestricted Hartree-Fock calculation spon-
taneously breaks spin symmetry. A different way to dis-
tinguish strong from weak correlation is through the
entanglement spectrum, readily accessible in DMRG.

Defining the left reduced density matrix !L¼TrRj"ih"j,
where the trace is over all grid sites in the right half of the
system, the entanglement spectrum consists of the energies
of the entanglement Hamiltonian HE ¼ # ln!L [27]. The
most probable density matrix eigenstates are those in the
low ‘‘energy’’ part of the spectrum. By classifying these
states according to their particle numberNL, we can under-
stand the dominant quantum fluctuations of the ground
state. Figure 4 shows the entanglement spectrum at the
center of a series of four-atom chains with increasing
interatomic separation. A sharp crossover at b ’ 5:5, where
the probability for charge fluctuations drops below that
of pure spin fluctuations, signals the onset of strongly
correlated behavior.
Many oxide materials of current interest are too strongly

correlated for present DFT methods, but crucial properties
must be calculated to an accuracy far beyond that of simple
model Hamiltonians. The method described here provides
a new, alternative route to studying strongly correlated
systems. All existing approximations, from heuristic cor-
rections to standard functionals, such as LDAþ U [28], to
methods developed for lattice models, such as dynamical
mean field theory [29], can be applied and tested more
easily, thoroughly, and accurately in the present setting.
Because our 1D world captures a feature crucial to density
functional approximations, namely, the continuum instead
of a lattice, such studies should provide the insight needed
to construct more accurate density functionals for real
strongly correlated materials.
We gratefully acknowledge DOE Grant No. DE-FG02-

08ER46496 (K. B., L. O.W., and S. R.W.) and NSF Grant
No. DMR-0907500 (E.M. S. and S. R.W.) for supporting
this work.
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FIG. 3 (color online). Exact gaps for chains of N soft hydrogen
atoms with atomic separation b ¼ 4 (error bars are less than
symbol sizes). The upper curve is a quadratic fit of exact gaps of
the largest six systems and extrapolates to a finite value Eg ’
0:33. The exact Kohn-Sham gaps, in contrast, extrapolate to zero
showing that for N ! 1 the true KS system is metallic (lower
curve is a linear fit of exat KS gaps of the largest six systems).
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FIG. 4 (color online). Entanglement spectrum at the center of
interacting 4-atom chains with various interatomic separations b.
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right of the cut for each density matrix eigenstate. The states
with NL ¼ 3, 1 primarily correspond to charge fluctuations
while those with NL ¼ 2 to spin fluctuations.
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One-Dimensional Continuum Electronic 
Structure with the Density-Matrix 
Renormalization Group and Its Implications 
for Density-Functional Theory E.M. 
Stoudenmire, Lucas O. Wagner, Steven R. 
White, Kieron Burke, Phys. Rev. Lett. 109, 
056402 (2012).
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KS versus GKS

• When dealing with orbital-dependent 
functionals, can treat as HF or pure KS (OEP)

• GKS treats as HF
• Both legitimate
• For ground-state energy, it typically makes 

almost no difference
• Makes large differences to eigenvalues 

spectrum!
• HSE gives good gaps in GKS
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Ensemble DFT
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18A541-3 Pribram-Jones et al. J. Chem. Phys. 140, 18A541 (2014)

is reproduced by the KS system, meaning

nW(r) =
M∑

m=0

wmnm(r) =
M∑

m=0

wmnS,m(r), (10)

where nm(r) = 〈!m|n̂(r)|!m〉, and nS,m(r) = 〈"m|n̂(r)|"m〉.
The KS densities of the individual states are generally not re-
lated to those of the interacting system; only their weighted
sums are equal, as in Eq. (10).

EW[n] is decomposed as in ground-state DFT,

EW[n] = TS,W[n] + V [n] + EH[n] + EXC,W[n]

= tr{D̂S,W T̂ } +
∫

d3r n(r)v(r)

+EH[n] + EXC,W[n], (11)

where only the ensemble XC energy EXC,W is unknown. The
form of vS,W(r) is then determined according to the variational
principle by requiring δEW[nW]/δnW(r) = 0, resulting in

vS,W[nW](r) = v(r) + vH[nW](r) + vXC,W[nW](r), (12)

where vH[n](r) = δEH[n]/δn(r), and vXC,W[n](r) = δEXC,W[n]
/δn(r). EH is generally defined to have the same form as the
ground-state Hartree energy functional. Although this choice
is reasonable, we find that it is more consistent to consider
EHX, the combined Hartree and exchange energy. This point
will be discussed in Sec. III A.

The ensemble universal functional FW[n] depends on the
set of weights wm. Reference 20 introduced the following set
of weights, so that only one parameter w is needed:

wm =
{ 1−wgI

MI −gI
m ≤ MI − gI ,

w m > MI − gI ,
(13)

where w ∈ [0, 1/MI ]. In this ensemble, here called GOK for
the authors Gross, Oliveira, and Kohn,34 I denotes the set of
degenerate states (or “multiplet”) with the highest energy in
the ensemble, gI is the multiplicity of the Ith multiplet, and MI

is the total number of states up to the Ith multiplet. GOK en-
sembles must contain full sets of degenerate states to be well-
defined. The weight parameter w interpolates between two en-
sembles: the equiensemble up to the Ith multiplet (w = 1/MI )
and the equiensemble up to the (I − 1)th multiplet (w = 0).
All previous studies of EDFT have been based on this type of
ensemble.

The purpose of EDFT is to calculate excited-state prop-
erties, not ensemble properties. With the GOK ensemble, the
excitation energy of multiplet I from the ground state, ωI, is
obtained using ensembles up to the Ith multiplet as

ωI = 1
gI

∂EI,w

∂w

∣∣∣∣
w=wI

+
I−1∑

i=0

1
Mi

∂Ei,w

∂w

∣∣∣∣
w=wi

, (14)

which simplifies to

ω1 = ωs,1,w + ∂EXC,w[n]
∂w

∣∣∣∣
n=nw

(15)

for the first excitation energy. Equation (14) holds for any
valid wi’s if the ensemble KS systems are exact, despite ev-
ery term in Eq. (14) being w-dependent. No existing EXC,w

approximations satisfy this condition.21, 24

Levy42 pointed out that there is a special case for w → 0
of bi-ensembles (I = 2, with all degenerate states within a
multiplet having the same density),

&vXC = lim
w→0

∂EXC,w[n]
∂w

∣∣∣∣
n=nw

=
[

lim
w→0

vXC,w[nw](r)
]

− vxc,w=0[nw=0](r) (16)

for finite r, where &vXC is the change in the KS highest-
occupied-molecular-orbital (HOMO) energy between w = 0
(ground state) and w → 0+.43 &vXC is a property of electron-
number-neutral excitations, and should not be confused with
the ground-state derivative discontinuity &XC, which is related
to ionization energies and electron affinities.44

B. Degeneracies in the Kohn-Sham system

Taking the He atom as our example, the interacting sys-
tem has a non-degenerate ground state, triply degenerate first
excited state, and a non-degenerate second excited state. How-
ever, the KS system has a fourfold degenerate first excited
state (corresponding to four Slater determinants), due to the
KS singlet and triplet being degenerate (Fig. 2). Consider an
ensemble of these states with arbitrary, decreasing weights, in
order to work with the most general case. Represent the en-
semble energy functional Eq. (5) as the KS ensemble energy,
ES,W , plus a correction, GW . This correction then must encode
the switch from depending only on the sum of the weights of
the excited states as a whole in the KS case to depending on
the sum of triplet weights and the singlet weight separately.

For the interacting system, the ensemble energy and
density take the forms

EW = E0 + wTω1 + wSω2,

nW(r) = n0(r) + wT&n1(r) + wS&n2(r),
(17)

where ωi = Ei − E0, and so on, wT is the sum of the triplet
weights, and wS is the singlet weight. On the other hand, for
the KS system we have

ES,W = ES,0 + (wT + wS) &ε1,w,
(18)

nW(r) = 2|φ1s |2 + (wT + wS)(|φ2s |2 − |φ1s |2).

FIG. 2. Diagram of the interacting and KS multiplicity structure for He. De-
generacy of the Ith multiplet is g(I); tildes denote KS values. For instance,
Ĩ = 2 refers to the KS multiplet used to construct the second (singlet) multi-
plet of the real system (I = 2), as is described in Sec. III B.
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is reproduced by the KS system, meaning

nW(r) =
M∑

m=0

wmnm(r) =
M∑

m=0

wmnS,m(r), (10)

where nm(r) = 〈!m|n̂(r)|!m〉, and nS,m(r) = 〈"m|n̂(r)|"m〉.
The KS densities of the individual states are generally not re-
lated to those of the interacting system; only their weighted
sums are equal, as in Eq. (10).

EW[n] is decomposed as in ground-state DFT,

EW[n] = TS,W[n] + V [n] + EH[n] + EXC,W[n]

= tr{D̂S,W T̂ } +
∫

d3r n(r)v(r)

+EH[n] + EXC,W[n], (11)

where only the ensemble XC energy EXC,W is unknown. The
form of vS,W(r) is then determined according to the variational
principle by requiring δEW[nW]/δnW(r) = 0, resulting in

vS,W[nW](r) = v(r) + vH[nW](r) + vXC,W[nW](r), (12)

where vH[n](r) = δEH[n]/δn(r), and vXC,W[n](r) = δEXC,W[n]
/δn(r). EH is generally defined to have the same form as the
ground-state Hartree energy functional. Although this choice
is reasonable, we find that it is more consistent to consider
EHX, the combined Hartree and exchange energy. This point
will be discussed in Sec. III A.

The ensemble universal functional FW[n] depends on the
set of weights wm. Reference 20 introduced the following set
of weights, so that only one parameter w is needed:

wm =
{ 1−wgI

MI −gI
m ≤ MI − gI ,

w m > MI − gI ,
(13)

where w ∈ [0, 1/MI ]. In this ensemble, here called GOK for
the authors Gross, Oliveira, and Kohn,34 I denotes the set of
degenerate states (or “multiplet”) with the highest energy in
the ensemble, gI is the multiplicity of the Ith multiplet, and MI

is the total number of states up to the Ith multiplet. GOK en-
sembles must contain full sets of degenerate states to be well-
defined. The weight parameter w interpolates between two en-
sembles: the equiensemble up to the Ith multiplet (w = 1/MI )
and the equiensemble up to the (I − 1)th multiplet (w = 0).
All previous studies of EDFT have been based on this type of
ensemble.

The purpose of EDFT is to calculate excited-state prop-
erties, not ensemble properties. With the GOK ensemble, the
excitation energy of multiplet I from the ground state, ωI, is
obtained using ensembles up to the Ith multiplet as

ωI = 1
gI

∂EI,w

∂w

∣∣∣∣
w=wI

+
I−1∑

i=0

1
Mi

∂Ei,w

∂w

∣∣∣∣
w=wi

, (14)

which simplifies to

ω1 = ωs,1,w + ∂EXC,w[n]
∂w

∣∣∣∣
n=nw

(15)

for the first excitation energy. Equation (14) holds for any
valid wi’s if the ensemble KS systems are exact, despite ev-
ery term in Eq. (14) being w-dependent. No existing EXC,w

approximations satisfy this condition.21, 24

Levy42 pointed out that there is a special case for w → 0
of bi-ensembles (I = 2, with all degenerate states within a
multiplet having the same density),

&vXC = lim
w→0

∂EXC,w[n]
∂w

∣∣∣∣
n=nw

=
[

lim
w→0

vXC,w[nw](r)
]

− vxc,w=0[nw=0](r) (16)

for finite r, where &vXC is the change in the KS highest-
occupied-molecular-orbital (HOMO) energy between w = 0
(ground state) and w → 0+.43 &vXC is a property of electron-
number-neutral excitations, and should not be confused with
the ground-state derivative discontinuity &XC, which is related
to ionization energies and electron affinities.44

B. Degeneracies in the Kohn-Sham system

Taking the He atom as our example, the interacting sys-
tem has a non-degenerate ground state, triply degenerate first
excited state, and a non-degenerate second excited state. How-
ever, the KS system has a fourfold degenerate first excited
state (corresponding to four Slater determinants), due to the
KS singlet and triplet being degenerate (Fig. 2). Consider an
ensemble of these states with arbitrary, decreasing weights, in
order to work with the most general case. Represent the en-
semble energy functional Eq. (5) as the KS ensemble energy,
ES,W , plus a correction, GW . This correction then must encode
the switch from depending only on the sum of the weights of
the excited states as a whole in the KS case to depending on
the sum of triplet weights and the singlet weight separately.

For the interacting system, the ensemble energy and
density take the forms

EW = E0 + wTω1 + wSω2,

nW(r) = n0(r) + wT&n1(r) + wS&n2(r),
(17)

where ωi = Ei − E0, and so on, wT is the sum of the triplet
weights, and wS is the singlet weight. On the other hand, for
the KS system we have

ES,W = ES,0 + (wT + wS) &ε1,w,
(18)

nW(r) = 2|φ1s |2 + (wT + wS)(|φ2s |2 − |φ1s |2).

FIG. 2. Diagram of the interacting and KS multiplicity structure for He. De-
generacy of the Ith multiplet is g(I); tildes denote KS values. For instance,
Ĩ = 2 refers to the KS multiplet used to construct the second (singlet) multi-
plet of the real system (I = 2), as is described in Sec. III B.
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FIG. 1. Exact densities and equiensemble exchange-correlation potentials of
the 1D box with two electrons. The third excited state (I = 4) is a double
excitation. See Sec. VI A.

Section VI consists of calculations for quite distinct sys-
tems, but all with just two electrons. The one-dimensional flat
box was used for the illustration here, which also gives rise
to double excitations. A box with a high, asymmetric barrier
produces charge-transfer excitations. Hooke’s atom is a three-
dimensional (3D) system, containing two Coulomb-repelling
electrons in a harmonic oscillator external potential.39 It has
proven useful in the past to test ideas and approximations in
both ground-state and TDDFT calculations.40 We close the
section reporting several new results for the He atom, using
ensembles that include low-lying triplet states. Atomic units
[e = ¯ = me = 1/(4πε0) = 1] are used throughout unless
otherwise specified.

II. BACKGROUND

A. Basic theory

The ensemble variational principle19 states that, for an
ensemble of the lowest M + 1 eigenstates #0, . . . , #M of
the Hamiltonian Ĥ and a set of orthonormal trial functions
#̃0, . . . , #̃M ,

M∑

m=0

wm〈#̃m|Ĥ |#̃m〉 ≥
M∑

m=0

wmEm, (1)

when the set of weights wm satisfies

w0 ≥ w1 ≥ . . . ≥ wm ≥ . . . ≥ 0, (2)

and Em is the eigenvalue of the mth eigenstate of Ĥ . Equal-
ity holds only for #̃m = #m. The density matrix of such an
ensemble is defined by

D̂W =
M∑

m=0

wm|#m〉〈#m|, (3)

where W denotes the entire set of weight parameters. Prop-
erties of the ensemble are then defined as traces of the cor-
responding operators with the density matrix. The ensemble
density nW(r) is

nW(r) = tr{D̂W n̂(r)} =
M∑

m=0

wmnm(r), (4)

and the ensemble energy EW is

EW = tr{D̂WĤ } =
M∑

m=0

wmEm. (5)

nW(r) is normalized to the number of electrons, implying∑M
m=0 wm = 1.

A HK1 type theorem for the one-to-one correspondence
between nW(r) and the potential in Ĥ has been proven,18, 20

so all ensemble properties are functionals of nW(r), includ-
ing D̂W . The ensemble HK theorem allows the definition
of a non-interacting KS system, which reproduces the ex-
act nW(r). The existence of an ensemble KS system assumes
ensemble v-representability. EDFT itself, however, only re-
quires ensemble non-interacting N-representability, since a
constrained-search formalism is available.20, 41 Ensemble N-
and v-representability are not yet proven, only assumed.

As in the ground-state case, only the ensemble energy
functional is formally known, which is

EW[n] = FW[n] +
∫

d3r n(r)v(r), (6)

where v(r) is the external potential. The ensemble universal
functional FW is defined as

FW[n] = tr{D̂W[n](T̂ + V̂ee)}, (7)

where T̂ and V̂ee are the kinetic and electron-electron inter-
action potential operators, respectively. The ensemble varia-
tional principle ensures that the ensemble energy functional
evaluated at the exact ensemble density associated with v(r)
is the minimum of this functional, Eq. (5).

The ensemble KS system is defined as the non-interacting
system that reproduces nW(r) and satisfies the following non-
interacting Schrödinger equation:

{
−1

2
∇2 + vS,W[nW](r)

}
φj,W(r) = εj,Wφj,W(r). (8)

The ensemble KS system has the same set of wm as the in-
teracting system. This consistency has non-trivial implica-
tions even for simple systems. This will be explored more in
Sec. II B.

The KS density matrix D̂s,W is

D̂S,W =
M∑

m=0

wm|%m〉〈%m|, (9)

where %m are non-interacting N-particle wavefunctions, usu-
ally assumed to be single Slater determinants formed by KS
orbitals φj,W . We find that this choice can be problematic, and
it will be discussed in Sec. III A. The ensemble density nW(r)
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Hartree and Exchange in Ensemble Density Functional Theory:
Avoiding the Nonuniqueness Disaster
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Ensemble density functional theory is a promising method for the efficient and accurate calculation of
excitations of quantum systems, at least if useful functionals can be developed to broaden its domain of
practical applicability. Here, we introduce a guaranteed single-valued “Hartree-exchange” ensemble
density functional, EHx½n", in terms of the right derivative of the universal ensemble density functional with
respect to the coupling constant at vanishing interaction. We show that EHx½n" is straightforwardly
expressible using block eigenvalues of a simple matrix [Eq. (14)]. Specialized expressions for EHx½n" from
the literature, including those involving superpositions of Slater determinants, can now be regarded as
originating from the unifying picture presented here. We thus establish a clear and practical description for
Hartree and exchange in ensemble systems.

DOI: 10.1103/PhysRevLett.119.243001

Density functional theory [1,2] (DFT) is, arguably, the
most important methodology in electronic structure theory
due to its remarkable accuracy in numerically efficient
approximations. But “open” systems that mix different
numbers of electrons, degenerate ground states, and excited
states have long posed a challenge to conventional
approaches (see, e.g., Refs. [3–9]), and can make even
qualitative accuracy very difficult to achieve. One promising
route around these problems is to employ ensemble density
functional theory [10–17] (EDFT), in which ensembles of
quantum states extend the original pure state approach of
DFT to such systems. Asmany quantum systems [18,19] are
better understood bymodels involving ensembles, ideas and
constructions at the heart of EDFT offer a more promising
approach for their study, compared to conventional DFT.
The ability to use EDFTas successfully and easily aswe now
use DFT could thus transform quantitative understanding of
numerous quantum systems and processes, such as charge
transfer and diabatic reactions.
In standard DFT, we decompose the universal functional,

F, of the particle density n, as

F½n" ¼ Ts½n" þ EHx½n" þ Ec½n"; ð1Þ

where Ts is the kinetic-energy density of the Kohn-Sham
(KS) reference system,

EHx½n" ¼
Z

drdr0

2jr − r0j
fnðrÞnðr0Þ − jρsðr; r0Þj2g; ð2Þ

is the Hartree energy plus the exchange energy—in which
ρsðr; r0Þ is the KS one-body reduced density matrix and
nðrÞ ¼ ρsðr; rÞ equals the interacting ground state particle
density—and Ec½n" is the correlation energy.

It may be tempting to switch to EDFT by replacing the
pure state quantities with ensembles (statistical mixtures of
pure states) by performing a simple replacement of the
particle density by its ensemble generalization. We thus set
ρsðr; r0Þ → Tr½Γ̂n

0ρ̂ðr; r0Þ"where Γ̂n
0 is the “ensemble density

matrix” operator describing the reference Kohn-Sham state,
and use Tr½Γ̂n

0ρ̂ðr; rÞ" ¼ nðrÞ to write

EHx½n" →
Z

drdr0

2jr − r0j
fnðrÞnðr0Þ − jTr½Γ̂n

0ρ̂ðr; r0Þ"j2g:

This, however, comes at the price of introducing spurious
“ghost interactions” to both the Hartree and exchange
terms—with sometimes disastrous consequences in appro-
ximate calculation [20].
A ghost interaction error can be understood as a

generalization of the one- or N-particle self-interaction
error [4]. But, rather than an orbital spuriously interacting
with itself it instead spuriously interacts with its ghost
counterpart in a different replica of the same system. From
this understanding comes a desire to correct these ghost
interactions in the Hartree and exchange energies. A formal
justification of these corrections was put forward by
Gidopoulos et al. [20] by importing the result for the
Hartree-Fock approximations for ensembles—which was
noticed to be ghost-interaction free for the cases considered
in the same cited work—and then invoking an extended
optimized effective potential method [21–23], as in pure
state exchange theory.
The principle espoused by Gidopoulos et al. is clear.

Unpleasantly, however, the resulting prescription must be
worked out for each case at hand. This process entails
rather tedious and system-specific bookkeeping. For
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Density functional theory can be extended to excited states by means of a unified variational approach
for passive state ensembles. This extension overcomes the restriction of the typical density functional
approach to ground states, and offers useful formal and demonstrated practical benefits. The correlation
energy functional in the generalized case acquires higher complexity than its ground state counterpart,
however. Little is known about its internal structure nor how to effectively approximate it in general.
Here we show that such a functional can be broken down into natural components, including what we call
“state-” and “density-driven” correlations, with the former amenable to conventional approximations, and
the latter being a unique feature of ensembles. Such a decomposition provides us with a pathway to general
approximations that are able to routinely handle low-lying excited states. The importance of density-driven
correlations is demonstrated, and an approximation for them is introduced and shown to be useful.

DOI: 10.1103/PhysRevLett.123.016401

Electronic structure theory has transformed the study of
chemistry, materials science, and condensed matter physics
by enabling quantitative predictions using computers. But a
general solution to the many-electron problem remains
elusive, because the electron-electron interactions imply
highly nontrivial correlations among the relevant degrees of
freedoms. Out of the numerous electronic structure method-
ologies, density functional theory [1–3] (DFT) has become
the dominant approach thanks to its balance between
accuracy and speed, achieved by using the electron density
as the basic variable, then mapping the original interacting
problem onto an auxiliary noninteracting problem.
DFT gives access to ground states, but not excited

states, meaning alternatives must be used for important
processes like photochemistry or exciton physics [4].
Its time-dependent extension (TDDFT) does offer access
to excited states at a reasonable cost [5,6], and it is thus
commonly employed for this purpose. Routine applica-
tions of TDDFT reuse ground-state approximations by
evaluating them on the instantaneous density, the so-
called adiabatic approximation. This approach fails badly,
however, when many-body correlations defy a time-
dependent mean-field picture, including for important
charge transfer excitations [7,8].
One highly promising alternative involves tackling both

ground and excited eigenstates by means of one and the
same density functional approach [9–12], using ensemble
DFT (EDFT). EDFT is appealing because it can automati-
cally deal with otherwise difficult orthogonality conditions
and can potentially tap into more than 30 years of density

functional approximation development. EDFT has been
shown to solve problems that are difficult for TDDFT, such
as charge transfers, double excitations, and conical inter-
sections [13–23].
Consolidating the preliminary success of EDFT into

useful approximations requires further understanding of
how many-body correlations get encoded in EDFTand how
they can be approximated generally. The correlation energy
of many-electron ground states is traditionally divided into
dynamical (weak) and static (strong) correlations. This
decomposition is by no means unambiguous, yet is very
useful both for designing, and understanding the limitations
of, approximations [24]. Both static and dynamic correla-
tions are also present in ensembles. But the internal
structure of the correlation energy functional for ensembles
is, by necessity, more complex. Little is known about its
specific properties and quirks.
In this Letter, we reveal a decomposition of the ensemble

correlation energy that lends itself both to an exact
evaluation and to a universal approximation scheme. Our
decomposition uncovers components of the correlation
energy in multistate ensembles that will be missed by
direct reuse of existing density functional approximations
on pure-state contributions. We show that the additional
components are unique features of EDFT and can lead to
significant errors, if ignored. We thus point out a crucial
missing step on the path to upgrade existing approxima-
tions for correlations.
The components revealed through our decomposition—

density-driven correlations—have so far gone unnoticed

PHYSICAL REVIEW LETTERS 123, 016401 (2019)
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Density functional theory can be generalized to mixtures of ground and excited states, for the purpose of
determining energies of excitations using low-cost density functional approximations. Adapting approxi-
mations originally developed for ground states to work in the new setting would fast-forward progress
enormously. But, previous attempts have stumbled on daunting fundamental issues. Here we show that
these issues can be prevented from the outset, by using a fluctuation dissipation theorem (FDT) to dictate
key functionals. We thereby show that existing exchange energy approximations are readily adapted to
excited states, when combined with a rigorous exact Hartree term that is different in form from its ground
state counterpart, and counterparts based on ensemble Ansatzë. Applying the FDT to correlation energies
also provides insights into ground statelike and ensemble-only correlations. We thus provide a
comprehensive and versatile framework for ensemble density functional approximations.

DOI: 10.1103/PhysRevLett.125.233001

Introduction.—Averages and fluctuations are essential
concepts to make sense of data of any sort. In physics, these
quantities are also used to explore the formal relationships of
theories and approximations. Via Feynman’s path integrals
[1], for example, classical physics itself can be seen to emerge
in terms of an averaged path that, in the limit of ℏ → 0,
dominates over otherwise irreducible quantum fluctuations.
In condensed-matter physics, to mention another important
example, mean-field approximations are used to formalize
the concept of the order parameters and their estimations [2];
consideration of fluctuations are then necessary to fully
characterize second-order phase transitions.
Density functional theory (DFT) [3,4] can also be

conceptualized in terms of averages and fluctuations. In
one and the same step [4] it overcomes the semiclassical
Thomas-Fermi approximation [5] and the mean-field
approximation by mapping the original many-body prob-
lem onto a one-electron problem capturing key fluctuations
—the exchange and correlation (xc) terms in DFT parlance.
Simple and effective xc approximations for these fluctua-
tions have enabled DFT to become the workhorse of
electronic structure calculations [6].
In this Letter, we turn to a generalization of DFT through

which excitation energies (not just the ground state energy)
of a many-electron system can be computed and invoke an
extension of the (so-called) fluctuation dissipation theorem
(FDT) to effectively deal with fluctuations relative to

excited states. We shall refer to this formulation of DFT
[7,8] as “ensemble DFT” (EDFT) but, strictly, we deal with
EDFT for excited states (rather than other formulations
such as the one that accounts for states with different
particle numbers [9]). EDFT is a primary competitor of
linear-response time-dependent DFT for the evaluation of
excitation energies. Previous attempts at deriving improved
approximations have, however, stumbled on a series of
difficulties. Progress has recently attained a faster pace due
to new fundamental and practical results [10–27].
Current wisdom stresses that ensembles are best dealt

with by treating Hartree-Fock (Hartree-exchange, Hx, in
DFT) energies as a “conjoint” unit [10,18]. Indeed, two of
the authors have previously strongly espoused this
approach [21]. But, much of the progress in devising
density functional approximations (DFA) for ground
states has been enabled by treating Hartree (H) and
exchange (x) components on different footings: with the
former almost always employed in its exact form and the
latter approximated in full, EHxc ≈ EH þ EDFA

xc (standard
approximations) or partially, EHxc ≈ αEHx þ ð1 − αÞðEH þ
EDFA
x Þ þ EDFA

c (hybrid approximations). DFAs of this form
have been refined over decades to balance accuracy and
practicality. It is imperative that we can transfer such
experience to excited states. Attempts so far have been
positive, but of somewhat narrow scope. Has the time come
to surrender?

PHYSICAL REVIEW LETTERS 125, 233001 (2020)
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We propose and work out a reduced density matrix functional theory (RDMFT) for calculating energies
of eigenstates of interacting many-electron systems beyond the ground state. Various obstacles which
historically have doomed such an approach to be unfeasible are overcome. First, we resort to a
generalization of the Ritz variational principle to ensemble states with fixed weights. This in combination
with the constrained search formalism allows us to establish a universal functional of the one-particle
reduced density matrix. Second, we employ tools from convex analysis to circumvent the too involved N-
representability constraints. Remarkably, this identifies Valone’s pioneering work on RDMFT as a special
case of convex relaxation and reveals that crucial information about the excitation structure is contained in
the functional’s domain. Third, to determine the crucial latter object, a methodology is developed which
eventually leads to a generalized exclusion principle. The corresponding linear constraints are calculated
for systems of arbitrary size.

DOI: 10.1103/PhysRevLett.127.023001

Developing a comprehensive understanding of excita-
tions in many-body systems is of utmost importance from
both a fundamental and technological point of view. For
instance, quantum excitations intervene in crucial processes
such as vision [1], define the properties of advanced
materials [2] and of states of matter in general [3–5] and
give rise to distinctive functionalities of devices [6,7].
Although modern computational methodologies can deter-
mine the ground state energies of a wide range of systems
relatively inexpensively and rather accurately [8], meth-
odological innovations are called for handling excitations
on an equal footing [9].
The workhorse of modern electronic structure calcula-

tions is the Kohn-Sham formulation [10] of density-func-
tional theory (DFT) [11]. As far as excitations are
concerned, its time-dependent extension could deal with
them rigorously, at least in principle [12]. In practice,
however, the widely used time-dependent DFT is not only
blessed but unfortunately also cursed by the so-called
adiabatic approximation [13–15]. Circumventing at least
some of the deficiencies of adiabatic time-dependent DFT,
ensemble DFT has become in recent years a promising
alternative for calculating excitations [16–29]—for exam-
ple, it can capture charge transfers, double excitations, and
avoided or conical crossings.
From a general perspective, density functional theories

are, however, not particularly well suited for the description
of strongly correlated systems. The particle density,
namely, does not directly reflect the correlation strength,

in striking contrast to the full one-particle reduced density
matrix (1RDM) with fractional occupation numbers in case
of strong correlations. This motivates one-particle reduced
density matrix functional theory (RDMFT) [30] as a more
suitable approach to strongly correlated quantum systems
and explains why RDMFT has become an active field of
research in recent years [31–44]. While the accuracy of
ground state calculations compares favorably to those of
DFT [45], no proper foundation for targeting excited states
within RDMFT exists yet. For instance, a formal justifi-
cation of a fully dynamical RDMFT is lacking and the
approach based on an adiabatic approximation to be
exploited through linear response techniques turns out to
be technically involved and numerically rather demanding
[34,46]. Most remarkably, the RDMFT analog of ensemble
DFT for excited states has not even been considered yet,
despite its numerous potential advantages over time-de-
pendent functional theories.
In this Letter, we propose and work out the ensemble

version of RDMFT for calculating the energies of (selected)
low-lying excited states. For this, we put forward a
generalization of the Ritz variational principle which
together with the constrained search formalism leads to
the definition of a universal functional. The crucial ingre-
dient which makes this method viable is a convex relax-
ation scheme. It allows us to circumvent the corresponding
too intricate one-body N-representability constraints and
leads instead to an easy-to-calculate generalization of
Pauli’s exclusion principle for mixed states.
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Density functional theory (DFT) has greatly expanded our ability to affordably compute and understand
electronic ground states, by replacing intractable ab initio calculations by models based on paradigmatic
physics from high- and low-density limits. But, a comparable treatment of excited states lags behind. Here,
we solve this outstanding problem by employing a generalization of density functional theory to ensemble
states (EDFT). We thus address important paradigmatic cases of all electronic systems in strongly (low-
density) and weakly (high-density) correlated regimes. We show that the high-density limit connects to
recent, exactly solvable EDFT results. The low-density limit reveals an unnoticed and most unexpected
result—density functionals for strictly correlated ground states can be reused directly for excited states.
Nontrivial dependence on excitation structure only shows up at third leading order. Overall, our results
provide foundations for effective models of excited states that interpolate between exact low- and high-
density limits, which we illustrate on the cases of singlet-singlet excitations in H2 and a ring of quantum
wells.
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Preamble.—Density functional theory (DFT) [1,2] is
best known as a computational modeling tool used in tens
of thousands of applicative scientific papers every year.
What is less widely known is that DFT offers a natural
connection between quantum mechanics and paradigmatic
physical conditions (high- and low-density limits) of
matter, in which electronic correlations attain two quanti-
tatively (weak and strong, respectively) and qualitatively
different fundamental ends. In this context, DFT serves
as a formal tool to understand the behavior of ground
state electronic structure via a rigorous constrained varia-
tional approach to the electronic structure problem.
Understanding of paradigmatic conditions then informs
model development, e.g., the popular “PBE” [3] approxi-
mation, and computational studies therefrom.
Unfortunately, DFT is only defined for ground states, so

cannot elucidate the structure of excited states. This Letter
will demonstrate that ensemble density functional theory
(EDFT) for excited states [4,5] can tackle this outstanding
problem. We shall show that recently derived Hartree and
exchange physics [6,7] become exact in the high density
(weak interaction) limit; so high-density excited electronic

states may be solved using these tools. More importantly,
we shall show that the low density (strong interaction) limit
of excited states behaves exactly like a ground state.
Therefore, the full suite of ground state strictly correlated
electron (SCE) tools and approximations [8–13] may be
used to solve both ground and excited states of low-density
many-electron systems.
Our Letter thereby improves understanding of excited

states in paradigmatic limits and connects their behavior to
well-defined density functionals for which exact forms and
approximations are available. It presents a crucial step
toward efficient excited state approximations that capture
important limits; and promises to accelerate and generalize
recent progress on low cost modeling of single [14–19] and
double excitations [16,20–23] that may range from weakly
to strongly correlated regimes.
The rest of this Letter proceeds as follows: First, we

introduce EDFTand show how it can be used to understand
the high- and low-density limits of interacting electrons in
realistic inhomogeneous systems. Then, using as an illus-
tration the strong interaction limit of electrons in a
harmonic well, we derive the asymptotic properties of
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Exact conditions in ensemble DFT

Steven Crisostomo

Exact Conditions for Ensemble Density Functional Theory T. Scott, J. Kozlowski, S. Crisostomo, A. Pribram-
Jones, and K. Burke, (2023). arXiv: 2307.00187
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Exchange-correlation energy from exact and model Green’s functions

that there are several ways in which an LDA can be

motivated from considerations on the chemical potential.

2. THEORY

We begin from the definition of the time-ordered Green’s

function at zero-temperature,

G��0(r⌧, r0⌧ 0) = �
⌦
T
�
 ̂�(rt) ̂

†
�0(r0t0)

�↵
, (1)

where T is the time-ordering operator and h·i is

the expectation value over the N -electron groundstate

| 0i. Throughout we only consider time-independent

Hamiltonians of the form

Ĥ = T̂ + v(r) + vee(|r� r0|), (2)

where T̂ is the kinetic energy operator, v(r) is the one-

body external potential, and v̂ee(|r�r0|) = |r�r0|�1
is the

Coulomb interaction, with atomic units used throughout.

In general the fermionic creation and annihilation

operators are time-evolved in the Heisenberg picture with

the Hamiltonian Ĥ � µN̂ , where µ is the chemical

potential and N̂ is the number operator. For the case

of time-independent Hamiltonians the GF depends only

on the di↵erence of times; in real-space G��0(rt, r0t0) =
G��0(r, r0, t� t

0).
From the time-evolution of the time-ordered Green’s

function we have

lim
t0!t+

�iTr
⇣
i
@

@t
+ µ

⌘
G = T + V + 2Vee, (3)

where the limit t
0 ! t is taken from above (t

0
> t), T is

the kinetic energy, V is the external potential energy, and

Vee is the electronic interaction energy. Here Tr is taken to

be the trace along all coordinates (indices) of the Green’s

function. In real-space the trace is defined to be

TrG(t� t
0) =

Z
d
3
r

X

�=�0

lim
r0!r

G��0(r, r0, t� t
0). (4)

From Kohn-Sham theory we assume the existence of

a non-interacting auxiliary system that yields the exact

physical groundstate one-body density n(r). Using the

Kohn-Sham single particle Hamiltonian,

ĤS = T̂ + vS(r), (5)

we can define the Kohn-Sham Green’s function

Gs,��0(r, r0, t � t
0). The single particle KS potential vS(r)

is uniquely determined by n(r) and can be decomposed

into its separate components

vS(r) = vext(r) + vH(r) + vXC(r), (6)

where vH(r) is the Hartree potential

vH(r) =

Z
d
3
r
0 n(r0)

|r� r0| , (7)

and vXC(r) is the exchange-correlation potential

vXC(r) =
�EXC[n]

�n(r)
, (8)

which is a multiplicative potential defined as the functional

derivative of the XC energy density functional evaluated at

the groundstate density.

From the Kohn-Sham Green’s function we can recover

the associated energy of the KS system,

lim
t0!t+

�iTr
⇣
i
@

@t
+ µS

⌘
GS = TS + VS, (9)

where µS is the KS chemical potential, TS is the KS kinetic

energy and VS is the expectation value of the one-particle

KS potential,

VS = V + VH + VXC, (10)

where VH and VXC are the expectation values of vH(r) and
vXC(r) respectively. Taking the di↵erence of Eq. (3) and Eq.

(9), and using the fact that the expectation of the Hartree

potential is twice the Hartree energy, VH = 2U , we produce

a formula for the XC energy,

EXC � VXC +�µN

2
= lim

t0!t+
� i

2
Tr

✓
i
@

@t
+ T̂

◆
�G, (11)

where the di↵erence of the exact and KS Green’s function

is given by �G = G�GS and where �µ = µ� µS. Using

the Dyson equation associated to the KS system, we can

rewrite Eq. (11) in a more familiar form,

EXC = lim
t0!t+

�iTr
⇣
T̂�G+

1

2
⌃XCG

⌘
, (12)

where ⌃XC = ⌃ � vH is the XC contribution of the self-

energy ⌃ and where we implicitly assume integrals and sums

across all intermediate coordinates of ⌃XCG. In Eq. (12)
we can identify the terms on the right side to be the kinetic

contribution to the DFT correlation energy TC = T � TS

and the XC potential energy UXC = Vee � U , whose sum is

the total XC energy EXC = TC + UXC.

In the frequency domain Eq. (3) and Eq. (12) provide

a method for isolating the XC energy contributions from

di↵erent spectral features of G,

EXC � VXC

2
= lim

�!0+

�i

2

Z
d!

2⇡
e
i!� Tr

⇣
! + T̂

⌘
�G, (13)

where we have absorbed �µ into VXC.

In the following section we demonstrate how an LDA

may be derived from simple approximation on the Green’s

function alone.

3. LOCAL DENSITY APPROXIMATION OF GF

The first local density approximation in the context of

Green’s function methods was done by Sham and Kohn, a

2
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HF and GW spectral functions
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Adiabatic connection formula for Green’s functions

We compute the GW Green’s function through Dyson’s
equation,

G
GW (�n,!) =

⇥
(G0(!))

�1 � ⌃GW (�n,!)
⇤�1

, (23)

where G0 is the GF of the non-interacting asymmetric
dimer. We can express all amplitudes and poles in terms
of site-occupations and dimer parameters; these expressions
are cumbersome and are provided in Appendix (?). From
our asymmetric GW result we are able to reproduce
the correct symmetric limits which preserve particle-hole
symmetry. We are also able to compute the correct
symmetric energy which is derivable from the expressions
produced by Romaniello and co-authors.

In Fig 3 we plot the GW energies and site-occupation
di↵erence alongside the exact and HF results. For small
values of u we see that the GW site-occupation di↵erence
and energy improves considerably over the Hartree-Fock
result, as expected. As u is increased we see that the
HF and GW results become worse approximations, but that
they all correctly converge to the same result in the weakly
correlated limit of �v ! 1. For large u the GW curves in
Fig. 3 appear to qualitatively recover aspects of the exact
curves, but curiously there are some values of �v where the
HF curves are better approximations.

FIG. 3: The exact (blue), Hartree-Fock (orange), and GW
(green) site-occupation di↵erences and energies with t = 1/2.

FIG. 4: The exact (blue), Hartree-Fock (orange), and GW
(green) retarded spectral functions with t = 1/2.

The accuracy of the GW and HF energies can be
understood from the quality of the spectral functions. In
Fig. 4, for the case of u = 2 and �v = 1, we see that
GW provides a better approximation than HF, even though
GW makes errors in placing the satellites. For the case of
u = 4 and �v = 6, the amplitudes of the exact satellite
peaks become near zero and contribute little to the total
energy. For this case, GW approximates the satellites poorly
and introduces errors to the total energy as a consequence.
HF cannot produce satellites since the HF groundstate is
a single Slater determinant. By neglecting the satellites,
HF is able to better approximate the largest peaks and the
energy.
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The significance of warm dense matter

• Field of WDM has been revolutionized by 
thermal DFT calculations over last 20 years.

• Applications include inertial confinement 
fusion, exoplanet equations of state, interiors 
of giant planets, shock experiments,…

• But just like TDDFT, folks use ground-state 
approximations, when they should use 
temperature-dependent XC.

• How important is the missing T-dependence?
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Exoplanets

Kieron Burke Exci.ng Tutorial advanced DFT 31

condensation of He and H2, so ∼98 wt% of the disk always re-
mains gaseous.
Because the condensation temperatures of silicate and ice

phases are quite different, it is their condensation fronts in the
midplane of protoplanetary disks that set the rough boundaries
of planetesimals with different compositions (16). The most
important among them—the snowline—marks the stability field
of the H2O ice. The presence of ices would significantly enhance
the local mass surface density of solids in the disk. H2O snow-
lines are prominent features in protoplanetary disks, which have
been predicted theoretically (17–19), then inferred around TW
Hya (20) and HL Tau (21), and now observed by ALMA around
young star V883 Ori undergoing FU Ori outburst, which pushes
the water snowline to 40 a.u. to make it observable (22, 23).
If a planet forms in the presence of ices, the phase diagram

predicts a similar amount of multicomponent, H2O-dominated
ices to be added to the rocky material. The rock/ice ratio does
not strongly depend on the host star metallicity ([Fe/H] or [M/H])

because the metallicity mostly reflects the ratio of the total con-
densable solid materials (metal-plus-rock-plus-ices) to the H2-
plus-He gas.
Planet formation in the solar system is thought to have started in

an accretion disk that fed the initial mixture of interstellar H2-plus-
He gas, C,N,O-rich ices, and Mg,Si,Fe-rich silicates to the growing
Sun. At some point, the disk became thermally zoned, with the inner
regions being hot enough for complete evaporation of all ices and
some silicates and the colder outer zone where only a portion of ices
could evaporate. Within each zone, the dust grains first coagulated
into kilometer-sized planetesimals, and then, within ∼105 y, Moon-
to Mars-sized planetary embryos accreted. The initial differences in
radial proportions of silicates and ices in the protoplanetary disk,
along with other factors, resulted in the formation of three types of
planets in our solar system—the small terrestrial rocky planets, the
large gas giants Jupiter and Saturn, and the intermediate ice giants
Uranus and Neptune. Whether the formation of our solar-system
planets is typical or not is still an open question.

Fig. 1. The mass–radius variations among selected exoplanets with masses determined by the radial-velocity (RV) method and densities constrained to better
than ±50% (1-σ). The plotted data are listed in SI Appendix, Table S1. The color of the data points denotes stellar insolation (see legend in the upper left
corner) in the Earth units (expressed as either the amount of stellar bolometric radiation reaching a given area at their orbital distances, assuming negligible
orbital eccentricities, normalized to the Earth’s value or surface equilibrium temperatures assuming Earth-like albedo). The vertical histogram on the right y
axis shows the log-binned radius distribution of 1,156 Kepler confirmed/candidate planets with radius errors less than ±10% (1-σ, the average error is
about ±7%), orbiting only the main-sequence host stars within the effective temperatures in the 5,000–6,500 K range [Gaia Data Release 2 (7)]. The dotted
cyan and purple arrows show the growth trajectories of planets formed by continuous addition of either H2O ices or H2-plus-He gas to a planetary core of a
given mass (SI Appendix). The area outlined by the gray dashed rectangle is shown in Fig. 2.

9724 | www.pnas.org/cgi/doi/10.1073/pnas.1812905116 Zeng et al.
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The radii and orbital periods of 4,000+ confirmed/candidate exo-
planets have been precisely measured by the Kepler mission. The
radii show a bimodal distribution, with two peaks corresponding
to smaller planets (likely rocky) and larger intermediate-size plan-
ets, respectively. While only the masses of the planets orbiting the
brightest stars can be determined by ground-based spectroscopic
observations, these observations allow calculation of their aver-
age densities placing constraints on the bulk compositions and
internal structures. However, an important question about the
composition of planets ranging from 2 to 4 Earth radii (R⊕) still
remains. They may either have a rocky core enveloped in a H2–He
gaseous envelope (gas dwarfs) or contain a significant amount of
multicomponent, H2O-dominated ices/fluids (water worlds). Plan-
ets in the mass range of 10–15 M⊕, if half-ice and half-rock by
mass, have radii of 2.5 R⊕, which exactly match the second peak
of the exoplanet radius bimodal distribution. Any planet in the 2-
to 4-R⊕ range requires a gas envelope of at most a few mass
percentage points, regardless of the core composition. To resolve
the ambiguity of internal compositions, we use a growth model
and conduct Monte Carlo simulations to demonstrate that many
intermediate-size planets are “water worlds.”

exoplanets | bimodal distribution | ices | water worlds | planet formation

Thousands of exoplanets discovered during the last two de-
cades cover a wide range of masses and sizes. In the 1- to 20-

M⊕ and 1- to 4-R⊕ ranges, several types of planets have been
identified. The planets with high densities are considered rocky,
while the ones with low densities have been modeled either as
gas dwarfs or water worlds. The gas dwarfs are thought to have a
rocky core enveloped in a H2–He gaseous envelope, while the
water worlds contain a significant amount of multicomponent,
H2O-dominated ices/fluids in addition to rock and gas.
Here, we focus on such small planets, namely, the super-

Earths (1–2 R⊕) and the sub-Neptunes (2–4 R⊕). Mass–radius
curves (Figs. 1 and 2) show that they contain a few percent of gas
by mass at most; that is, their masses are dominated by the cores
that must have formed by the accretion of solids in the disk.
The measurements of planetary radii and orbital periods of more

than 4,000 confirmed or candidate exoplanets by the National
Aeronautics and Space Administration Keplermission (1–6) revealed
a bimodal distribution of planet sizes in the 1- to 4-R⊕ range. This
discovery was interpreted as the evidence for the presence of two
populations of planets—smaller rocky worlds and the intermediate-
size planets, which, because of their proximity to the host star, were
interpreted as gas dwarfs rather than water worlds.
Further refinement of the host stellar parameters by the Gaia

astrometry mission (7–11) yields a better resolved bimodal dis-
tribution of planetary radii with two peaks and a local minimum
or gap at 1.8–2 R⊕ (Figs. 1 and 2). The gap separates two sub-
populations of planets on the mass–radius diagram (Figs. 1 and
2): super-Earths (1–2 R⊕) and sub-Neptunes (2–4 R⊕). Whether
this gap is a direct result of planet formation or a secondary
feature formed by photoevaporation of gas envelopes is debated.
The distances to the host stars in both subpopulations appear to

be distributed log-uniform, that is, flat in semimajor axis a or
orbital period P, beyond ∼10 d (figure 7 of ref. 12). Such orbit
distributions of both populations challenge the photoevaporation
scenario as the cause of the gap because it strongly depends on the
orbital distance. If the gap is caused by photoevaporation, then an
anticorrelation in their orbital distributions is expected (13). We
interpret the flatness in distributions as additional evidence for
both populations arising from their intrinsic properties (14).
The distinction between gas dwarfs and water worlds cannot

be made based on the mass–radius relationship alone or the
presence or lack of a H2–He gas layer (15). Therefore, we invoke
a mass–radius distribution among small planets and their growth
models to argue that at least some intermediate-size planets are
water worlds.
Protoplanetary disks of solar-like composition contain three

principal planet-building components—nebular gas, H2O-rich
ices, and rocky [silicates-plus-(Fe,Ni)-metal] materials—whose
compositions are a function of element volatility (characterized
by the equilibrium condensation temperatures; Fig. 3) and,
therefore, change radially and temporally with changing tem-
perature. In the case of cooling, a gradual decrease in temper-
ature results in progressive condensation of Fe–Mg–Ca–Al
silicates and (Fe,Ni)-metal making up 0.5% of the total disk mass
at ∼1,000 K, until C,N,O,H-bearing ices (1.0% total mass) start
to sequentially condense below ∼200 K. The condensation of
ices is a sharp feature in the protoplanetary disk. Once the
temperature drops a bit (a few kelvins) below its condensation
temperature, a very large amount of ice would form. In the case
of heating, for example, due to inward dust drift, the sequence of
phase changes reverses. The disk never gets cold enough for

Significance

The discovery of numerous exoplanet systems containing di-
verse populations of planets orbiting very close to their host
stars challenges the planet formation theories based on the
solar system. Here, we focus on the planets with radii of 2–4
R⊕, whose compositions are debated. They are thought to be
either gas dwarfs consisting of rocky cores embedded in H2-rich
gas envelopes or water worlds containing significant amounts
of H2O-dominated fluid/ice in addition to rock and gas. We
argue that these planets are water worlds.
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XC GGA for warm dense matter

• DFT applications dominate WDM, 
getting equilibrium free energy using 
Mermin theorem

• But all use zero-temperature XC 
functionals, ignoring temp 
dependence

• Even temp-dependence of uniform 
gas still being calculated via QMC

• We use CP-DFT to calculate 
temperature dependence of PBE

Kieron Burke Exci.ng Tutorial advanced DFT 32

John Kozlowski
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(a) XC Enhancement Factors (b) Di↵erence between tPBE and
CPDFT

(c) Percent Error of tPBE

FIG. 5: rs = 1.0: XC enhancement factors for tPBE and CPDFT as functions of reduced gradient s.

(a) XC Enhancement Factors (b) Di↵erence between tPBE and
CPDFT

(c) Percent Error of tPBE

FIG. 6: rs = 2.0: XC enhancement factors for tPBE and CPDFT as functions of reduced gradient s.

(a) XC Enhancement Factors (b) Di↵erence between tPBE and
CPDFT

(c) Percent Error of tPBE

FIG. 7: rs = 3.0: XC enhancement factors for tPBE and CPDFT as functions of reduced gradient s.
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Summary

• gsDFT:
– DCDFT improves energetics when density goes bad
– Standard DFT may work better for strong correlation than we 

realize
– CP-DFT is a new way to calculate energies for strong correlation
– Orbital-free DFT may work as a potential functional (not density 

functional)
• Excitations: 

– optical and  quasiparticles different, both differ from gsKS
– GKS versus KS matters for excitations, not gs
– Ensemble DFT is alternative to TDDFT
– Can extract XC energy from GF

• Warm dense matter
– Used CPDFT to generate temp dependence of PBE

• Thanks to NSF and DOE for support, and KAIST for 
sponsoring trip.
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Exciting hands-on challenges

1) DC-DFT
Calculate e.g., the PBE energy evaluated on the LDA 
density for a bulk

2) CP-DFT
Do a CP-DFT calculation for an atom

3) EDFT
Do an ensemble DFT calculation for an optical excitation

4) thDFT
Calculate PBE free energy for bulk Al in its perfect 
crystalline structure at 30,000K by thermal occupation of KS 
orbitals.
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