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Basic problem

• Non-relativistic
• Born-Oppenheimer approximation
• No external B field
• First principles
• Ab initio?
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Basic Electronic Structure Problem

• Just want E(R), mostly (fixed nuclei, electrons in 
ground state):
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DFT in a Nutshell
Kieron Burke[a,b] and Lucas O. Wagner*[a,b]

The purpose of this short essay is to introduce students and

other newcomers to the basic ideas and uses of modern

electronic density functional theory, including what kinds of

approximations are in current use, and how well they work (or

not). The complete newcomer should find it orients them well,

while even longtime users and aficionados might find

something new outside their area. Important questions

varying in difficulty and effort are posed in the text, and are

answered in the Supporting Information. VC 2012 Wiley

Periodicals, Inc.

DOI: 10.1002/qua.24259

Electronic Structure Problem

For the present purposes, we define the modern electronic struc-

ture problem as finding the ground-state energy of nonrelativistic

electrons for arbitrary positions of nuclei within the Born-Oppen-

heimer approximation.[1] If this can be done sufficiently accurately

and rapidly on a modern computer, many properties can be pre-

dicted, such as bond energies and bond lengths of molecules,

and lattice structures and parameters of solids.

Consider a diatomic molecule, whose binding energy curve

is illustrated in Figure 1. The binding energy is given by

EbindðRÞ ¼ E0ðRÞ þ
ZA ZB
R

% EA % EB (1)

where E0(R) is the ground-state energy of the electrons with

nuclei separated by R, and EA and ZA are the atomic energy

and charge of atom A and similarly for B. The minimum tells us

the bond length (R0) and the well-depth (De), corrected by

zero-point energy (!hx=2), gives us the dissociation energy (D0).

The Hamiltonian for the N electrons is

Ĥ ¼ T̂ þ V̂ee þ V̂; (2)

where the kinetic energy operator is

T̂ ¼ % 1

2

XN

j¼1

r2
j ; (3)

the electron–electron repulsion operator is

V̂ee ¼
1

2

X

i 6¼j

1

jri % rjj
; (4)

and the one-body operator is

V̂ ¼
XN

j¼1

vðrjÞ: (5)

For instance, in a diatomic molecule, v(r) ¼ %ZA/r % ZB/|r % R|.

We use atomic units unless otherwise stated, setting

e2 ¼ !h ¼ me ¼ 1, so energies are in Hartrees (1 Ha ¼ 27.2 eV

or 628 kcal/mol) and distances in Bohr radii (1 a0 ¼ 0.529 Å).

The ground-state energy satisfies the variational principle:

E ¼ min
W

hWjĤjWi; (6)

where the minimization is over all antisymmetric N-particle

wavefunctions. This E was called E0(R) in Eq. (1).*

Many traditional approaches to solving this difficult many-

body problem begin with the Hartree–Fock (HF) approxima-

tion, in which W is approximated by a single Slater determi-

nant (an antisymmetrized product) of orbitals (single-particle

wavefunctions)[2] and the energy is minimized.[3] These include

configuration interaction, coupled cluster, and Møller-Plesset

perturbation theory, and are mostly used for finite systems,

such as molecules in the gas phase.[4] Other approaches use

reduced descriptions, such as the density matrix or Green’s

function, but leading to an infinite set of coupled equations

that must somehow be truncated, and these are more com-

mon in applications to solids.[5]

More accurate methods usually require more sophisti-

cated calculation, which takes longer on a computer. Thus,

there is a compelling need to solve ground-state electronic

structure problems reasonably accurately, but with a cost in

Figure 1. Generic binding energy curve. For N2, values for R0 and De are
given in Table 1. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

[a, b] K. Burke, L. O. Wagner
Department of Chemistry, University of California, Irvine, California 92697
Department of Physics, University of California, Irvine, California 92697
E-mail: lwagner@uci.edu

*Explain why a vibrational frequency is a property of the ground-state of the
electrons in a molecule.
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Dominance of ground-state energy

• Determines which molecules and solids exist 
and many of their most basic properties

• Bond lengths / lattice parameters
• Vibrational frequencies / phonons
• Reaction rates via transition-state barriers
• Vital in chemistry, increasingly so in  materials
• Often care more about response properties in 

physics
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Mathematical form of problem
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Hamiltonian

Hamiltonian for N electrons in the presence of external potential v(r):
Ĥ = T̂ + V̂ee + V̂ ,

where the kinetic and elec-elec repulsion energies are

T̂ = ≠1
2

Nÿ

i=1

Ò2

i , V̂ee =
1
2

Nÿ

i=1

Nÿ

j ”=i

1
|ri ≠ rj |

,

and di�erence between systems is N and the one-body potential

V̂ =
Nÿ

i=1

v(ri)

Often v(r) is electron-nucleus attraction

v(r) = ≠
ÿ

–

Z–

|r ≠ R–|

where – runs over all nuclei, plus weak applied E and B fields.
Kieron (UC Irvine) ABC of ground-state DFT Weizmann14 7 / 39

Schrödinger equation

6N-dimensional Schrödinger equation for stationary states

{T̂ + V̂ee + V̂ } = E  ,  antisym

The one-particle density is much simpler than  :

n(r) = N

ÿ

‡1

. . .
ÿ

‡N

⁄
d

3
r2 . . . d

3
rN | (r‡1, r2‡2, . . . , rN‡N)|2

and n(r) d
3
r gives probability of finding any electron in d

3
r around r.

Wavefunction variational principle:
I E [ ] © È |Ĥ| Í is a functional

I Extrema of E [ ] are stationary states, and ground-state energy is

E = min
 

È |T̂ + V̂ee + V̂ | Í

where  is normalized and antisym.
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Useful books for materials
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B. DFT (ground-state)
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Useful intro for anyone
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The purpose of this short essay is to introduce students and

other newcomers to the basic ideas and uses of modern

electronic density functional theory, including what kinds of

approximations are in current use, and how well they work (or

not). The complete newcomer should find it orients them well,

while even longtime users and aficionados might find

something new outside their area. Important questions

varying in difficulty and effort are posed in the text, and are

answered in the Supporting Information. VC 2012 Wiley

Periodicals, Inc.
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Electronic Structure Problem

For the present purposes, we define the modern electronic struc-

ture problem as finding the ground-state energy of nonrelativistic

electrons for arbitrary positions of nuclei within the Born-Oppen-

heimer approximation.[1] If this can be done sufficiently accurately

and rapidly on a modern computer, many properties can be pre-

dicted, such as bond energies and bond lengths of molecules,

and lattice structures and parameters of solids.

Consider a diatomic molecule, whose binding energy curve

is illustrated in Figure 1. The binding energy is given by

EbindðRÞ ¼ E0ðRÞ þ
ZA ZB
R

% EA % EB (1)

where E0(R) is the ground-state energy of the electrons with

nuclei separated by R, and EA and ZA are the atomic energy

and charge of atom A and similarly for B. The minimum tells us

the bond length (R0) and the well-depth (De), corrected by

zero-point energy (!hx=2), gives us the dissociation energy (D0).

The Hamiltonian for the N electrons is
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where the kinetic energy operator is

T̂ ¼ % 1

2

XN
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X
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For instance, in a diatomic molecule, v(r) ¼ %ZA/r % ZB/|r % R|.

We use atomic units unless otherwise stated, setting

e2 ¼ !h ¼ me ¼ 1, so energies are in Hartrees (1 Ha ¼ 27.2 eV

or 628 kcal/mol) and distances in Bohr radii (1 a0 ¼ 0.529 Å).

The ground-state energy satisfies the variational principle:

E ¼ min
W

hWjĤjWi; (6)

where the minimization is over all antisymmetric N-particle

wavefunctions. This E was called E0(R) in Eq. (1).*

Many traditional approaches to solving this difficult many-

body problem begin with the Hartree–Fock (HF) approxima-

tion, in which W is approximated by a single Slater determi-

nant (an antisymmetrized product) of orbitals (single-particle

wavefunctions)[2] and the energy is minimized.[3] These include

configuration interaction, coupled cluster, and Møller-Plesset

perturbation theory, and are mostly used for finite systems,

such as molecules in the gas phase.[4] Other approaches use

reduced descriptions, such as the density matrix or Green’s

function, but leading to an infinite set of coupled equations

that must somehow be truncated, and these are more com-

mon in applications to solids.[5]

More accurate methods usually require more sophisti-

cated calculation, which takes longer on a computer. Thus,

there is a compelling need to solve ground-state electronic

structure problems reasonably accurately, but with a cost in

Figure 1. Generic binding energy curve. For N2, values for R0 and De are
given in Table 1. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

[a, b] K. Burke, L. O. Wagner
Department of Chemistry, University of California, Irvine, California 92697
Department of Physics, University of California, Irvine, California 92697
E-mail: lwagner@uci.edu

*Explain why a vibrational frequency is a property of the ground-state of the
electrons in a molecule.

VC 2012 Wiley Periodicals, Inc.
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Youtube: Teaching the theory in DFT
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DFT on Coursera
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Thomas/Fermi Theory 1927
• Derived in 1926 without Schrodinger eqn.

• Thomas-Fermi Theory (TF):
– T ≈ TTF

– Vee≈ U = Hartree energy
– V = ∫dr r (r) v(r)
– E0 = T + Vee + V
– Minimize E0[n]  for fixed N

• Properties:
– Typical error of order 10%
– Teller’s unbinding theorem:  Molecules don’t bind.

Exci8ng Tutorial basic DFT 12

Ts
loc =

3(3π )2/3

10
d3r n5/3(r)∫

U =
1
2

d3r∫ d3r ' n(r)n(r ')
| r − r ' |∫

Kieron Burke

12



8/3/23

4

Hohenberg-Kohn theorems (1964)

• HK I:1-1 between n(r) and v(r)

• HK II: F[n] is independent of v(r) [universal]

• HK III: Minimize F+V for fixed N to find n(r)

• Constrained search

• TF a crude approximation to exact theory
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Hohenberg-Kohn theorem (1964)

1 Rewrite variational principle (Levy 79):

E = min
 

È |T̂ + V̂ee + V̂ | Í

= minn

;
F [n] +

⁄
d

3
r v(r)n(r)

<

where

F [n] = min
 æn

È |T̂ + V̂ee| Í

I The minimum is taken over all positive n(r) such that
s

d
3
r n(r) = N

2 The external potential v(r) and the hamiltonian Ĥ are determined to
within an additive constant by n(r)

P. Hohenberg and W. Kohn, Phys. Rev. 136, B 864 (1964).

M. Levy, Proc. Natl. Acad. Sci. (U.S.A.) 76, 6062 (1979).
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KS equations (1965)
Kohn-Sham 1965

Define fictitious non-interacting electrons satisfying:

;
≠1

2Ò2 + vS(r)
<

„j(r) = ‘j„j(r),
Nÿ

j=1

|„j(r)|2 = n(r).

where vS(r) is defined to yield n(r).
Define TS as the kinetic energy of the KS electrons, U as their
Hartree energy and

T + Vee = TS + U + EXC

the remainder is the exchange-correlation energy.
Most important result of exact DFT:

vS(r) = v(r) +
⁄

d
3
r

n(rÕ)

|r ≠ rÕ| + vXC[n](r), vXC(r) =
”EXC

”n(r)
Knowing EXC[n] gives closed set of self-consistent equations.
Kieron (UC Irvine) ABC of ground-state DFT Weizmann14 14 / 39

KS potential of He atom

n(r)

!2 !1 0 1 2

!4

!2

0

v(r)

vS(r)

≠2
r

z

Every density has (at most) one KS
potential.a
Red line: vS(r) is the exact KS
potential.

a Accurate exchange-correlation
potentials and total-energy components for
the helium isoelectronic series, C. J.

Umrigar and X. Gonze, Phys. Rev. A 50,

3827 (1994).

Kieron (UC Irvine) ABC of ground-state DFT Weizmann14 15 / 39

Kieron Burke Exci8ng Tutorial basic DFT 14

F =

14

XC approximations 20 yrs ago

• Local density approximation (LDA)
– Uses only n(r) at a point.

• Generalized gradient approx 
(GGA) 
– Uses both n(r) and |Ñn(r)|
– Should be more accurate, corrects 

overbinding of LDA
– Examples are PBE and BLYP

• Hybrid (global):
– Mixes some fraction of HF with GGA
– Examples are B3LYP and PBE0 
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I. INTRODUCTION

Ĥ = T̂ + V̂ee + V̂ (1)

T [n] ⇡ T
LDA
S [n] =

3(3⇡)2/3

10

Z
d
3
r n

5/3(r) (2)

Vee[n] ⇡ U [n] =
1

2

Z
d
3
r

Z
d
3
r
0 n(r)n(r

0)

|r� r0| (3)

V [n] =

Z
d
3
r n(r) v(r) (4)

Ĥ| i = E| i (5)

E = min
 

h |Ĥ| i (6)

E
TF = min

n

⇢
T

LDA
S [n] + U [n] +

Z
d
3
r v(r)n(r)

�
(7)

E
GGA
XC =

Z
d
3
r e

GGA
XC (n(r), |rn(r)|) (8)

E
hyb
XC = a (EX � E

GGA
X ) + E

GGA
XC (9)
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h |Ĥ| i (6)

E
TF = min

n

⇢
T

LDA
S [n] + U [n] +

Z
d
3
r v(r)n(r)

�
(7)

E
GGA
XC =

Z
d
3
r e

GGA
XC (n(r), |rn(r)|) (8)

E
hyb
XC = a (EX � E

GGA
X ) + E

GGA
XC (9)

2

15

Cool DFT applications
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high transition temperatures. This comes from either the predicted 
material not having the ideal chemical environment for H, or from the 
limitations of standard density functional theory tools to account for 
anharmonicity and for the quantum nature of H (ref. 23).

Covalent metals present an alternative path to realizing 
room-temperature superconductivity, with the superconduc-
tivity of the exemplary system of MgB2 being driven by strongly 
covalent-bonding/antibonding states crossing the Fermi energy24. 
Covalent hydrogen-rich organic-derived materials are another class 
of high-Tc materials that combine the advantages of covalent met-
als and metal superhydrides25,26; an example is H3S (refs. 3,27). Interest 
in these materials has been long-standing since Little’s proposal of 
superconductivity at room temperatures in one-dimensional organic 
polymers with highly polarizable side chains28 and Ginzburg’s model of 
two-dimensional alternating conducting/dielectric ‘sandwich’ layers2,29. 
The removal of the heavy metal from superstoichiometric hydrides in 
covalent hydrogen-rich systems offers a promise for ‘greener’ future 
materials synthesized using low-cost, earth-abundant organic reac-
tants. Here, we report superconductivity in a simple organic-derived 
C–S–H system with a highest Tc of  about 288 K over a large pressure 
range between ~140 GPa and ~275 GPa, characterized by electrical 
resistance, magnetic susceptibility and field-dependence electrical 
transport measurements, as well as Raman spectroscopy. A series of 
structural and electronic phase transitions from molecular to metallic 
and superconducting are confirmed.

Superconductivity in carbonaceous sulfur hydride
The photochemically synthesized C–S–H system becomes supercon-
ducting with its highest critical temperature being Tc = 287.7 ± 1.2 K at 
267 ± 10 GPa. The temperature probe’s accuracy is ±0.1 K. The supercon-
ducting transition was evidenced by a sharp drop in resistance towards 
zero for a temperature change of less than 1 K (Fig. 1a), which was measured 

during the natural warming cycle (~0.25 K min−1) from low temperature 
with a current of 10 µA–1 mA. The transition temperature determined from 
the onset of superconductivity appears to be approaching a dome shape 
as a function of pressure (Fig. 1b). It increases from 147 K at 138 ± 7 GPa 
until it levels off to ~194 K at about 220 GPa, with the pressures measured 
from the diamond edge using the Akahama 2006 scale30 and calibrated 
H2 vibron frequency (see Methods). Remarkably, a sharp increase in Tc 
is observed above 220 GPa with a rate of around 2 K GPa−1 (Fig. 1b). The 
highest pressure studied is 271 GPa, at which the material has Tc ≈ 280 K. 
A Pt lead inside the cell failed as the pressure was increased from 267 GPa, 
forcing the use of an adjacent Pt lead as a combined current–voltage probe 
(quasi-four-point measurement). We estimate the contribution from this 
shorted section of the Pt lead to be only ~0.1 Ω (Extended Data Fig. 4). 
Additionally, no change in the shape of the superconducting transition 
was observed when the current was reduced to 0.1 mA, hence indicating 
bulk—rather than filamentary—superconductivity. These results were con-
firmed by a large number of experiments with over three dozen samples 
(see Supplementary Information and Extended Data Fig. 7). We note that 
the resistance of the sample decreases with increasing pressure, showing 
that it becomes more metallic at higher pressures.

a.c. magnetic susceptibility
A superior test for superconductivity is the search for a strong diamag-
netic transition in the a.c. magnetic susceptibility. In Fig. 2a, the real 
part of the temperature-dependent a.c. magnetic susceptibility χ′(T) 
of the sample is shown for one of the experimental runs. The onset of 
superconductivity is signalled by a large (10–15 nV), sharp drop in sus-
ceptibility indicating a diamagnetic transition, which shifts to higher 
temperatures with increasing pressure. The highest transition tem-
perature measured in this way is 198 K (transition midpoint), reached 
at the highest pressure measured (189 GPa). The quality of the data is 
high given the small sample size (~80 µm in diameter and 5–10 µm in 
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Fig. 1 | Superconductivity in C–S–H at high pressures. a, Temperature- 
dependent electrical resistance of the C–S–H system at high pressures (P),  
showing superconducting transitions at temperatures as high as 287.7 ± 1.2 K at 
267 ± 10 GPa. The data were obtained during the warming cycle to minimize  
the electronic and cooling noise. We note that the left and right vertical axes 
represent results from two different experimental runs. b, microphotographs  
showing the photochemical process of superconducting C–S–H sample with 
electrical leads in a four-probe configuration for resistance measurements.  
c, Pressure dependence of Tc, as determined by the sharp drop in the electrical 

resistance (‘ρ’) and a.c. susceptibility (‘χ′’) measurements shown in Figs. 1a, 2a. 
Tc increases with pressure from ~140 GPa, then gradually levels off to ~194 K 
around 220 GPa, and then sharply increases afterwards, showing a discontinuity  
around 225 GPa. The highest Tc observed was 287.7 K at 267 GPa. The 
low-temperature quasi-four-point resistance measurement at 271 GPa (the 
highest pressure measured) shows a superconducting transition at ~280 K. The 
solid lines are to guide the eye and different colours represent different experiments.  
The red and black arrows represent room temperature (15 °C) and the freezing 
point of water, respectively. Error bars reflect uncertainty in the measured value.

Catalyst Design by Interpolation in the Periodic
Table: Bimetallic Ammonia Synthesis Catalysts

Claus J. H. Jacobsen,*,† Søren Dahl,† Bjerne S. Clausen,†
Sune Bahn,‡ Ashildur Logadottir,‡ and Jens K. Nørskov‡

Haldor Topsøe A/S, NymølleVej 55
DK-2800 Lyngby, Denmark

Center for Atomic-Scale Materials Physics (CAMP)
Technical UniVersity of Denmark, Building 307

DK-2800 Lyngby, Denmark

ReceiVed April 16, 2001
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Thus far, essentially all heterogeneous catalysts of industrial
importance have been developed by trial-and-error experimenta-
tion. The classic example of this approach is the discovery of the
iron-based ammonia synthesis catalyst by Mittasch and co-workers
who tested more than 2500 different catalysts in 6500 experi-
ments.1,2 Parallel testing methods, which can speed up catalyst
screening significantly, have recently been introduced,3 but a better
scientific basis could make catalyst development substantially
more efficient.
We show that a rational catalyst development strategy can be

developed on the basis of simple, physically motivated concepts.
We use the ammonia synthesis reaction to illustrate the approach,
but the general principles should be broadly applicable.
The starting point is the volcano-shaped relation between the

ammonia synthesis activity of different catalysts and their nitrogen
adsorption energy shown in Figure 1. The curve shows (in
complete agreement with experimental evidence4) that Ru and
Os are the best catalysts among the pure metals. The dependence
of the catalytic activity on the nitrogen adsorption energy is a
consequence of a linear (Brønsted-Evans-Polanyi) relationship5
between the activation energy for the rate-limiting step, which is
N2 dissociation,6,7 and the stability of adsorbed N on the surface.
The reason for this relationship is that the transition state for N2
dissociation is very final-state-like. Therefore, the transition-state
energy essentially follows the nitrogen adsorption energy from
one metal to the next.
The volcano shape of the plot in Figure 1 implies that there is

an optimum for the nitrogen adsorption energy. This optimum
reflects a compromise between two mutually opposing ways of
achieving a high activity: a small activation barrier for N2
dissociation and a surface with low coverage of adsorbed atomic
nitrogen during ammonia synthesis. This requires a strong and a
weak N-surface interaction, respectively. At conditions relevant
in industrial processes we get closest to the optimum by using
Ru or Os as catalysts. However, these metals are very expensive
and thus less commercially attractive compared to the third-best
catalyst, Fe.
A rational approach could be to construct a surface (active sites)

with the desired intermediate nitrogen interaction energy by

combining two metals: one with too high adsorption energy and
one with too low adsorption energy. As indicated in Figure 1, a
combination of Mo (which binds N too strongly) with Co (which
binds N too weakly) should be close to optimum. This is exactly
what was found experimentally.8-10 A Co-Mo catalyst was
developed using this principle, and it had an ammonia synthesis
activity much better than that of the constituents and even better
than those of both Fe and Ru at low NH3 concentrations, see
Figure 2. In the following, we will show why this is the case.
We study the chemical behavior of alloy surfaces with mixed-

metal sites for ammonia synthesis using plane wave DFT
calculations. The RPBE exchange-correlation functional is ap-
plied,11 and Vanderbilt ultrasoft pseudopotentials12 are used to

* Corresponding author. Nymøllevej 55, DK-2800 Lyngby, Denmark,
Telephone: + 45 45 27 22 02. Fax: + 45 45 27 29 99. E-mail: chj@topsoe.dk.

† Haldor Topsøe A/S.
‡ Center for Atomic-Scale Materials Physics.
(1) Tamaru, K. In Catalytic Ammonia Synthesis: Fundamentals and
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Figure 1. Calculated turnover frequencies for ammonia synthesis as a
function of the adsorption energy of nitrogen. The synthesis conditions
are 400 °C, 50 bar, gas composition H2:N2 ) 3:1 containing 5% NH3.
The numbers are obtained by combining a microkinetic model describing
ammonia synthesis rates with the linear relation existing between the
potential energy and the activation energy for N2 dissociation.5 The known
entropy barrier for N2 dissociation20 and the effect of adding electropos-
itive promoters such as K and Cs21 have been taken into account in the
model.

Figure 2. Measured turnover frequencies for promoted Ru, Co3Mo3N,
and Fe catalysts. The number of active sites is calculated from the surface
areas of the active components, assuming that 1% of the total surface
sites (1019 m-2) are active for N2 dissociation. (Inset): Surface structure
of Co3Mo3N showing the existence of mixed Co-Mo sites.19 Light
gray: N; dark gray: Co; black: Mo.
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NERSC use
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Basic successes ground-state DFT

• Local, semi-local, hybrid, vdw-corrected 
approximations yield useful accuracy for weakly 
correlated systems

• Works for both solids and molecules
• Some find functionals from general rules of 

quantum mechanics (eg Perdew), some from fitting 
databases (eg Truhlar)

• Perdew functionals work comparably well for solids 
and molecules simultaneously

• Many fitted functionals work only for molecules, 
but more accurate for those cases.

Kieron Burke Exci8ng Tutorial basic DFT 18
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C. Differences in subjects

Kieron Burke Exci8ng Tutorial basic DFT 19
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Chemistry versus physics

• Primary focus in physics: Response properties
– Optical versus photoemission, etc.

• Primary focus in quantum chemistry: Ground-
state energies to high accuracy
– Tells you what bonds are formed and reaction rates
– Chemical accuracy (1 kcal/mol)
– CCSD(T)  fails for multireference systems
– Accuracy for weak bonds 0.1 kcal/mol

• Materials science needs both

Kieron Burke Exciting Tutorial basic DFT 20
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Molecules versus materials

• Traditionally, molecular codes distinct from 
materials codes

• Free boundaries versus periodic BCs
• Molecular codes usually use Gaussians centered on 

atoms
• Solid state codes often use plane waves
• Chemists have many databases, and can compare 

with highly accurate quantum chemical calculations
• Very little reference data for solids
• Basis sets in chemistry downloadable, allowing 10 

digit replication of energies with different codes

Kieron Burke Exci8ng Tutorial basic DFT 21
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Reproducibility and benchmarking

• In quantum chemistry, Pople created the concept 
of a ‘model chemistry’

• Model chemistry=a method plus a basis set
• Can get the same result to about 10 digits 

anywhere, anytime, with any professional-level 
code.

• The G2 data set is benchmark experimental and 
calculated data agreeing within 0.05 eV.

• In famous 1993 paper, Pople et al showed DFT 
could yield about 0.15 eV accuracy for covalent 
bond energies.

Kieron Burke Exciting Tutorial basic DFT 22
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GMTNK55

• Super database of 55 databases

• About 1500 numbers

• New methods routinely tested against it

• Many numbers at CCSD(T) level

• Beginning to see CCSD(T) no longer accurate 
enough

Kieron Burke Exciting Tutorial basic DFT 23
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Cost

• With GGA, KS cheaper than HF, scales N3

• CCSD(T) scales N7

• Moderate cluster, a week for CCSD(T) 20 atoms

• Decent desktop, a morning for 200 atoms HF 
or DFT.

Kieron Burke Exci8ng Tutorial basic DFT 24

24



8/3/23

7

Performance

• Most cases, CCSD(T) gives chemical accuracy 
(error < 1 kcal/mol) for main group chemistry if 
converged

• Gives signal if there are known unknowns

• Dissociates H2 correctly, but not N2 because of 
single-reference starting point

Kieron Burke Exci8ng Tutorial basic DFT 25
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Solids

• Much harder to do calculations
• Much harder to guarantee convergence
• See Science article 2016
• No real databases
• Much benchmark data from expt

Kieron Burke Exciting Tutorial basic DFT 26
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DFT METHODS

Reproducibility in density functional
theory calculations of solids
Kurt Lejaeghere,* Gustav Bihlmayer, Torbjörn Björkman, Peter Blaha, Stefan Blügel,
Volker Blum, Damien Caliste, Ivano E. Castelli, Stewart J. Clark, Andrea Dal Corso,
Stefano de Gironcoli, Thierry Deutsch, John Kay Dewhurst, Igor Di Marco, Claudia Draxl,
Marcin Dułak, Olle Eriksson, José A. Flores-Livas, Kevin F. Garrity, Luigi Genovese,
Paolo Giannozzi, Matteo Giantomassi, Stefan Goedecker, Xavier Gonze, Oscar Grånäs,
E. K. U. Gross, Andris Gulans, François Gygi, D. R. Hamann, Phil J. Hasnip,
N. A. W. Holzwarth, Diana Iuşan, Dominik B. Jochym, François Jollet, Daniel Jones,
Georg Kresse, Klaus Koepernik, Emine Küçükbenli, Yaroslav O. Kvashnin,
Inka L. M. Locht, Sven Lubeck, Martijn Marsman, Nicola Marzari, Ulrike Nitzsche,
Lars Nordström, Taisuke Ozaki, Lorenzo Paulatto, Chris J. Pickard, Ward Poelmans,
Matt I. J. Probert, Keith Refson, Manuel Richter, Gian-Marco Rignanese, Santanu Saha,
Matthias Scheffler, Martin Schlipf, Karlheinz Schwarz, Sangeeta Sharma,
Francesca Tavazza, Patrik Thunström, Alexandre Tkatchenko, Marc Torrent,
David Vanderbilt, Michiel J. van Setten, Veronique Van Speybroeck, John M.Wills,
Jonathan R. Yates, Guo-Xu Zhang, Stefaan Cottenier*

INTRODUCTION:The reproducibility of results
is one of the underlying principles of science. An
observation canonly be accepted by the scientific
community when it can be confirmed by inde-
pendent studies. However, reproducibility does
not come easily. Recent works have painfully
exposed cases where previous conclusionswere
not upheld. The scrutiny of the scientific com-
munity has also turned to research involving
computer programs, finding that reproducibil-
ity depends more strongly on implementation
than commonly thought. These problems are
especially relevant for property predictions of
crystals and molecules, which hinge on precise
computer implementations of the governing
equation of quantum physics.

RATIONALE:Thiswork focuses ondensity func-
tional theory (DFT), a particularly popular quan-

tum method for both academic and industrial
applications. More than 15,000 DFT papers are
published each year, and DFT is now increas-
ingly used in an automated fashion to build
large databases or applymultiscale techniques
with limited human supervision. Therefore, the
reproducibility of DFT results underlies the
scientific credibility of a substantial fraction of
current work in the natural and engineering
sciences. A plethora of DFT computer codes
are available, many of them differing consid-
erably in their details of implementation, and
each yielding a certain “precision” relative to
other codes. How is one to decide formore than
a few simple cases which code predicts the cor-
rect result, and which does not? We devised a
procedure to assess the precision of DFT meth-
ods and used this to demonstrate reproduci-
bility among many of the most widely used

DFT codes. The essential part of this assessment
is a pairwise comparison of a wide range of
methodswith respect to their predictions of the
equations of state of the elemental crystals. This
effort required the combined expertise of a large
group of code developers and expert users.

RESULTS:We calculated equation-of-state data
for four classes of DFT implementations, total-
ing 40 methods. Most codes agree very well,
with pairwise differences that are comparable
to those between different high-precision exper-

iments. Even in the case of
pseudization approaches,
which largely depend on
theatomic potentials used,
a similar precision can be
obtainedaswhenusing the
full potential. The remain-

ing deviations are due to subtle effects, such as
specific numerical implementations or the treat-
ment of relativistic terms.

CONCLUSION: Our work demonstrates that
the precision of DFT implementations can be
determined, even in the absence of one absolute
reference code. Although this was not the case 5
to 10 years ago,most of the commonlyused codes
and methods are now found to predict essen-
tially identical results. The established precision
of DFT codes not only ensures the reproducibility
of DFT predictions but also puts several past and
future developments on a firmer footing. Any
newly developedmethodology can nowbe tested
against the benchmark to verify whether it
reaches the same level of precision. NewDFT ap-
plications can be shown to have used a suffi-
ciently precise method.Moreover, high-precision
DFT calculations are essential for developing im-
provements to DFTmethodology, such as new
density functionals, whichmay further increase
the predictive power of the simulations.▪

RESEARCH

SCIENCE sciencemag.org 25 MARCH 2016 • VOL 351 ISSUE 6280 1415

The list of author affiliations is available in the full article online.
*Corresponding author. E-mail: kurt.lejaeghere@ugent.be (K.L.);
stefaan.cottenier@ugent.be (S.C.)
Cite this article as K. Lejaeghere et al., Science 351, aad3000
(2016). DOI: 10.1126/science.aad3000

Recent DFTmethods yield reproducible results.Whereas older DFT implementations predict different values (red darts), codes have now evolved to
mutual agreement (green darts).The scoreboard illustrates the good pairwise agreement of four classes of DFT implementations (horizontal direction)
with all-electron results (vertical direction). Each number reflects the average difference between the equations of state for a given pair of methods,with
the green-to-red color scheme showing the range from the best to the poorest agreement.
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D Modern functional approximation
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Heart of commonly-used XC approximations

• Local density approximation (LDA)
– Uses only n(r) at a point.

• Generalized gradient approx 
(GGA) 
– Uses both n(r) and |Ñn(r)|
– Should be more accurate, corrects 

overbinding of LDA
– Examples are PBE and BLYP

• Hybrid (global):
– Mixes some fraction of HF with GGA
– Examples are B3LYP and PBE0 
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I. INTRODUCTION
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Exact conditions on EXC

• Can deduce many exact properties satisfied by 
EXC

• EX[ng] = g EX[n] where ng(r) = g3 n(g r)

• EX[n↑,n↓] = EX[n↑,0] + EX[0,n↓] 

• I = -eHOMO

Kieron Burke Exci8ng Tutorial basic DFT 29
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Perdew approach

• Write approximate form

• Use exact conditions to fix parameters in form

• Choose conditions to ensure reasonable 
performance on molecules and solids

• Nowadays, include appropriate norms (eg H atom, 
uniform gas) but no covalent bonds

• At each level, find a single functional for all 
systems

Kieron Burke Exciting Tutorial basic DFT 30
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Jacob’s ladder
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Chapter in the book Density Functional Theory edited by Éric Cancès and Gero Friesecke.

Review of approximations for the exchange-correlation energy in

density-functional theory

Julien Toulouse
Laboratoire de Chimie Théorique (LCT), Sorbonne Université and CNRS, F-75005 Paris, France

Institut Universitaire de France, F-75005 Paris, France

31 August, 2022

In this chapter, we provide a review of ground-state Kohn–Sham density-functional theory
of electronic systems and some of its extensions, we present exact expressions and constraints
for the exchange and correlation density functionals, and we discuss the main families of ap-
proximations for the exchange-correlation energy: semilocal approximations, single-determinant
hybrid approximations, multideterminant hybrid approximations, dispersion-corrected approx-
imations, as well as orbital-dependent exchange-correlation density functionals. The chapter
aims at providing both a consistent bird’s-eye view of the field and a detailed description of
some of the most used approximations. It is intended to be readable by chemists/physicists and
applied mathematicians. For more coverage of the subject, the reader may consult for example
the books of Refs. [1–5] and the review articles of Refs. [6–15].
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1 Basics of density-functional theory

1.1 The many-body problem

We consider an N -electron system (atom or molecule) in the Born–Oppenheimer and non-
relativistic approximations. The electronic Hamiltonian in the position representation is, in
atomic units,

H = −
1

2

N
∑

i=1

∇2
ri
+

1

2

N
∑

i=1

N
∑

j=1
i !=j

1

|ri − rj|
+

N
∑

i=1

vne(ri), (1.1)

where ∇2
ri

= ∆ri is the Laplacian with respect to the electron coordinate ri and vne(ri) =

−
∑Nn

α=1 Zα/|ri − Rα| is the nuclei-electron interaction depending on the positions {Rα} and
charges {Zα} of the Nn nuclei. The stationary electronic states are determined by the time-
independent Schrödinger equation,

HΨ(x1,x2, ...,xN ) = EΨ(x1,x2, ...,xN ), (1.2)
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ABSTRACT
In the past 30 years, Kohn–Sham density functional theory has emerged as the most popular elec-
tronic structuremethod in computational chemistry. To assess the ever-increasingnumber of approx-
imate exchange-correlation functionals, this review benchmarks a total of 200 density function-
als on a molecular database (MGCDB84) of nearly 5000 data points. The database employed, pro-
vided as Supplemental Data, is comprised of 84 data-sets and contains non-covalent interactions,
isomerisation energies, thermochemistry, and barrier heights. In addition, the evolution of non-
empirical and semi-empirical density functional design is reviewed, and guidelines are provided
for the proper and e'ective use of density functionals. The most promising functional considered
is ωB97M-V, a range-separated hybrid meta-GGA with VV10 nonlocal correlation, designed using a
combinatorial approach. From the local GGAs, B97-D3, revPBE-D3, and BLYP-D3 are recommended,
while from the local meta-GGAs, B97M-rV is the leading choice, followed by MS1-D3 and M06-L-
D3. The best hybrid GGAs are ωB97X-V, ωB97X-D3, and ωB97X-D, while useful hybrid meta-GGAs
(besides ωB97M-V) include ωM05-D, M06-2X-D3, and MN15. Ultimately, today’s state-of-the-art func-
tionals are close to achieving the level of accuracy desired for a broad range of chemical applica-
tions, and the principal remaining limitations are associatedwith systems that exhibit signi,cant self-
interaction/delocalisation errors and/or strong correlation e'ects.

1. Introduction

Density functional theory (DFT) provides an exact
approach to the problem of electronic structure theory
[1]. Within the Born– Oppenheimer approximation, the
electronic energy, Ee[ρ(r)], can be written as a functional
of the electron density,

Ee [ρ (r)] = T [ρ (r)] +Ven [ρ (r)] + J [ρ (r)]
+Q [ρ (r)] (1)

where T[ρ(r)] is the kinetic energy of the electrons,
Ven[ρ(r)] is the nuclear– electron attraction energy,
J[ρ(r)] is the classical electron– electron repulsion energy,

CONTACT Martin Head-Gordon mhg@cchem.berkeley.edu
Supplemental data for this article can be accessed at: https://doi.org/./...

and Q[ρ(r)] is the non-classical (quantum) electron–
electron interaction energy. The second and third terms
in Equation (1) are known and can be computed accord-
ing to Equations (2) and (3), respectively:

Ven [ρ (r)] = −
M∑

A=1

∫ ZA

|r − RA|ρ (r) dr (2)

J [ρ (r)] = 1
2

∫ ∫
ρ (r1) ρ (r2)

r12
dr1dr2 (3)

The objective of DFT is to develop accurate approx-
imate functionals for T[ρ(r)] and Q[ρ(r)]. Since the
kinetic energy contribution is the largest unknown term,

©  The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-
nd/./), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon
in any way.
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Different approximations

• Almost all materials calculations use a 
functional created by Perdew et al

• Moderate accuracy for both materials and 
molecules

• Most chemical user calculations do not
– B3LYP, old but standard
– wB97-V is very accurate for GMTNK55 databases
– Use D3 or D4 dispersion
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GS energy is 99% of everything

• Successes (and failures) of GS DFT do not 
automatically mean TDDFT will ‘work’

• Almost all applications of gsDFT focus solely on 
E and its derivatives

• A KS calculation also yields gs density and KS 
eigenvalues/eigenvectors, both occ and unocc

• Density is rarely looked at; usually, but not 
always, ‘pretty’ good

• Eigenvalues are usually ‘very bad’, unless fixed
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Exact conditions

• Most chemistry functionals ignore exact 
conditions.  Yet do very well on databases.

• How come?
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Use and abuse of exact conditions in density functional theory

Ryan Pederson⇤

Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA

Kieron Burke†
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Exact conditions have long been used to guide the construction of density functional approximations.
Nowadays hundreds of approximations are in common use, many of which neglected these conditions in
their design. In this work, we analyze many well-known exact conditions and revive several forgotten
ones. Crucial distinctions are made between necessary and su�cient conditions, and between all possible
electronic densities and those found in Coulombic systems. Simple search algorithms find violations of
su�cient conditions, if they exist, and subsequent algorithms construct densities that violate necessary
conditions, if applicable. We find that both non-empirical and empirical approximations appear to satisfy
most exact conditions when evaluated on the space of Coulombic system densities. The role of exact
conditions in density functional development is revisited.

Modern density functional theory (DFT) calculations
span many branches of the science of matter[]. In
the standard Kohn-Sham approach, only the exchange-
correlation (XC) energy need be approximated as a
functional of the electronic (spin)-densities. Currently,
hundreds of distinct XC approximations are available in
standard DFT codes [1], reflecting the immense di�culty
in finding approximations that are generally accurate.
Exact conditions are known analytical properties of

the exact functional and have played a vital role in
the development of approximations[]. The argument is
that imposing exact conditions makes an approximation
better resemble the exact functional, leading to improved
generality. Typically, non-empirical functionals rely heavily
on such conditions, eschew fitting to any chemical bonds,
and work reasonably for both materials and molecules.
Such guiding principals led to a series of successful and
widely used approximations, culminating in the SCAN [2]
functional which attributes much of its success to the
satisfaction of ’all known’ (17) exact conditions that such a
functional can satisfy.
On the other hand, many approximations tailored for

molecular chemistry applications[] stray from this notion
and blatantly ignore exact conditions in their design[]. Such
approximations can be extremely accurate on comprehensive
molecular benchmarks[], often more accurate than their
more constrained counterparts. Typically, they behave
poorly for materials.
We illustrate this di↵erence with the correlation energy

of a two-electron density in Fig 1, calculated with two
generalized gradient approximations (GGA’s). The first,
the Perdew-Burke-Ernzerhof (PBE) correlation functional,
which adheres to many exact conditions, automatically
satisfies the basic requirement that the correlation energy is

⇤ pedersor@uci.edu
† kieron@uci.edu

FIG. 1. An unpolarized ground-state gedanken density with
2 electrons whose correlation energy is -17 mH in PBE, but
+37 mH in LYP. For reference, the He atom density (divided
by 7) is plotted.

never positive, yielding -17 mH. The second, the Lee-Yang-
Parr (LYP) correlation functional, which does not explicitly
enforce many exact conditions, yields the nonsensical +37
mH. Yet LYP has been used successfully in over 100,000
chemical applications[].

How can the success of these two seemingly disjoint
design paradigms be rationalized? We resolve this paradox
by reassessing the role of exact conditions in modern DFT
approximations. To do this, we develop several new (and
not so new) tools. We carefully parse the logic of exact
conditions, finding that many enforced conditions are too
strong for real matter. A computational scanning procedure
finds violations, coupled with construction of corresponding
reasonable (but not realistic) densities, as in Fig 1. Half
a dozen exact conditions and hundreds of approximate

1

Reassessing the role of exact condi2ons in density func2onal theory R. Pederson and K. Burke, (2023). arXiv: 2303.01766
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Summary

• Ground-state DFT is successful on a vast scale, 
covering many areas

• Typically delivers useful accuracy

• Big differences between chemical and material 
communities

• Perdew functionals interpolate between solids and 
molecules

• Thanks to you, students and collaborators, and NSF
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