HUMBOLDT-UNIVERSITÄT ZU BERLIN

Transport properties in β -Ga₂O₃ thin films

Saskia F. Fischer

www.physik.hu-berlin.de/gnm

HUMBOLDT-UNIVERSITÄT ZU BERLIN

Novel Materials Group, HU Berlin

Johannes Boy, Robin Ahrling, Martin Handwerg, Rüdiger Mitdank

DFG FI 932/10 FI 932/11

Leibniz Institute for Crystal Growth

Andreas Popp/Günther Wagner, Zbigniew Galazka

Leibniz ScienceCampus GraFOx

"Growth and fundamentals of oxides for electronic applications"

A transparent wide-band gap semiconductor

ß-Ga₂O₃

Galazka *et al., Journal of Crystal Growth* **404**, 184–191 (2014).

Single crystal growth: Z. Galazka

Leibniz Institute for Crystal Growth, Berlin, Germany

B-Ga₂O₃: Monoclinic crystal structure

H. Peelaers et al., Phys. Status Solidi B 252, No. 4 (2015)

ß-Ga₂O₃ : Electronic band structure

10 8 6 4 Energy (eV) E_{G} 4.8 e 2 0 -2 -4 -6 -8 LF Y Γ ZF₁Z X₁ ΥΓ Г NX ΜI I_1

Charge carriers: Electrons

Transport: parabolic band approx.

Mohamed, et al., Journal of Physics: Conference Series **286**, 012027 (2011).

V. M. Bermudez, Chem. Phys. 323 193 (2006)

Opportunity of high breakdown field in Ga₂O₃

for high-power-devices

• E_{br} *predicted* to be ~ 8 MV/cm

key advantage of Ga_2O_3

• Larger than the theoretical limits for GaN and SiC

Pearton et al., Appl. Phys. Rev. 5, 011301 (2018).

Chabak *et al., Appl. Phys. Lett.* **109**, 213501 (2016).

M. Higashiwaki, *et al.;* Appl. Phys. Lett. **100**, 013504 (2012). Review (2022)

Material properties

Material Parameter	Si	GaAs	4H-SiC	GaN	Diamant	$\beta - Ga_2O_3$	${\rm ZnGa_2O_4}$
Bandlücke $E_{\rm g}$ [eV]	1.14	1.43	3.25	3.4	5.5	4.8	4.6
Dielektrizitätskon- stante $\epsilon_{\rm s}$	12	13	10	9	5.5	11	9.9
Durchbruchfeld $E_{\rm Cr}$ [MV/cm]	0.3	0.4	2.5	3.3	10	8	6.5
Elektronenbeweg- lichkeit $\mu \ [\text{cm}^2/(\text{Vs})]$	1450	8400	1000	1200	2000	300	107
Wärmeleitfähigkeit $\lambda [W/(mK)]$	150	50	370	250	2000	10-30	22

ß-Ga₂O₃-bulk single crystals and homoepitaxial films

Bulk single crystals:

Czochralski-growth

- As-grown, no doping
- $n = 9 \cdot 10^{16} 6.5 \cdot 10^{17} \text{ cm}^{-3}$
- $d = 233 525 \,\mu m$

Galazka *et al.,* J .Crystal Growth **404**, 184–191 (2014).

Epitaxial layers:

Metallorganic Vapor Dep. (MOCVD)

- Si-Doping
- $n = 2.5 \cdot 10^{17} 1.6 \cdot 10^{18} \text{ cm}^{-3}$
- d = 25 225 nm
- 2D island growth & (rough) step flow growth

Mohamed, et al., J. Physics: Conf. Series 286, 012027 (2011).

Groups of G. Wagner / A. Popp, IKZ

ß-Ga₂O₃ – A transparent wide-band gap *semiconductor*

- Electrical conductivity
- Thermal conductivity
- Thermo-electricity

Outlook: Giant-phonon drag increase by thin-film design

Thermo-/electric micro measurement platform for bulk & thin films

FIG. 1. (a) to (d) exemplary AFM measurement results of the investigated samples. (a) is the substrate of the d = 152 nm sample, (b) the substrate of the d = 50 nm sample, (c) the d = 152 nm thin film and (d) the d = 50 nm thin film. (e) Microscopic picture of a β -Ga₂O₃ thin film with the thermoelectric measurement platform consisting of Ti/Au (7 nm/35 nm) metal lines. Ohmic contacts were achieved by Al-wedge bonding at (1) - (4). The line heater and thermometer (a) - (m) were contacted by gold wires with indium contacts.

J. Boy, et al., APL Mater. 7, 022526 (2019).

Bulk

Thick epitaxial films

Thin epitaxial films

→

Limiting effects of electron mobility - even vor ideal thin films

A "zoo" of scattering mechanisms

Electron density

J. Boy, PhD Thesis (2022)

scattering by phonons

J. Boy, PhD Thesis (2022)

J. Boy, PhD Thesis (2022)

Dominant scattering mechanisms in ß-Ga₂O₃ single crystal

single crystal bulk & 200 nm film

high-quality homoepitaxial films

Mobility suppression with decreasing film thickness

Real films:

- Neutral impurities, hopping transport
- Twin boundary scattering

$$\mu_{\rm tb} = \frac{eL}{\sqrt{8k_{\rm B}T\pi m^*}} \exp\left(-\frac{E_{\rm B}}{k_{\rm B}T}\right)$$

J.W. Orton, *et al.*;
Rep. on Prog. in Physics **43**, 1263 (1980).
R. Schewski, *et al.*;
J. of Appl. Phys. **120**, 225308 (2016).

- ... but also for ideal thin films:
 - Surface scattering &

boundary effects

Surface scattering & boundary effects

• length scales:

thickness tmean free path lde Broglie wavelength $\lambda_{\rm e}$ surface roughness $r_{\rm S}$

- In metals: l pprox t , $\lambda_e \ll l$, $r_S \gg \lambda_e$
 - Fuchs-Sondheimer model: l/t determines mobility

K. Fuchs, Math. Proc. of the Camebridge Philosophical Society 34, 100 (1938).E. Sondheimer, Advances in Physics 1, 1 (1952).

- Here: $\lambda_e pprox t$, $\lambda_e \gg l$, $\lambda_e \gg r_S$
 - Bergmann model: quantum mechanical waveguide effect

$$\mu_{\text{Bergmann}} = \frac{e}{\hbar} \left(\frac{t}{\lambda_{\text{e}}}\right)^2 \ln\left(\frac{t}{\lambda_{\text{e}}}\right) \frac{1}{nt}$$

G. Bergmann, et al.; PRL 94, 106801 (2005).

Charge transport in *ideal* thin films

Bergman model

$$\mu_{\rm tot} = \left(\frac{1}{A \cdot \mu_{\rm Bergmann}} + \frac{1}{\mu_{\rm vol}}\right)^{-1}$$

- Mobilities fit to Bergmann model
- Quantitative agreement for A = 0.02

G. Bergmann, *et al.*, PRL **94**, 106801 (2005).

Summary

- Thick homoepitaxial (100) β-Ga₂O₃ films (above 150 nm) behave bulk-like
 - Optical phonon scattering dominates μ for high T
 - Ionized impurity scattering dominates μ for low T
- Thin films (below 100 nm) decrease in and change in $\mu(T)$ behavior
 - Additional scattering mechanism occurs
 → mobility reduction
 - Ideal films: Described by quantum mechanical waveguide effect
- Mobility reduction has to be taken into account for use of thin $\beta\text{-}Ga_2O_3$ films in devices

Thermal properties

Thermal transport measurements

Thermal conduction differential equation: thermal diffusivity: \widehat{D} thermal conductivity: $\widehat{\lambda} = \widehat{D} \cdot C_V \cdot \rho$

$$\frac{\partial^2 \Delta T(r,t)}{\partial r^2} + \frac{1}{D} \frac{\partial \Delta T(r,t)}{\partial t} = 0$$

Thermal transport measurements

2ω -method for anisotropy characterization

A. T. Ramu and J. E. Bowers; *Rev. Sci. Instr.* **83** 124903 (2012).

$$\Delta T = \frac{P}{\pi L \bar{\lambda}} \frac{1}{2\omega_{\rm h}} \int_{-\omega_{\rm h}}^{\omega_{\rm h}} \frac{1}{2\omega_{\rm s}} \int_{-\omega_{\rm s}}^{\omega_{\rm s}} K_0 (q \cdot (d + o - p)) \mathrm{d}o \mathrm{d}p$$

 $\propto U_{2\omega}$

$$\bar{\lambda} = \sqrt{\lambda_x \cdot \lambda_y}$$
$$q = \sqrt{i2\omega/D_x}$$

We obtain: $\bar{\lambda}_{[100],[001]}$, $\bar{\lambda}_{[100],[010]}$, $D_{[001]}$, $D_{[010]}$

Thermal transport in ß-Ga₂O₃ single crystals

Room temperature: thermal diffusivity D and thermal conductivity λ for bulk

- [100]-oriented Czochralski grown insulating Mg-doped β -Ga₂O₃ single-crystal
- Diffusivity *D* and conductivity λ :

$$\lambda = D \cdot C_V \cdot \rho$$

[1] V. M. Bermudez, *Chem. Phys.* **323** 193 (2006)
[2] Z. Guo *et al.*, Appl. Phys. Lett. **106**, 111909 (2015)
[3] M. D. Santia *et al.* Appl. Phys. Lett. **107**, 041907 (2015)

- Highest thermal conductivity value along [010] -> (010) no cleavage plane
- Lowest thermal conductivity value along [100] -> (100) cleavage plane

Thermal transport in ß-Ga₂O₃ single crystals

Temperature dependent thermal conductivity λ

• temperature-independent anisotropy factor: $\frac{\lambda_{[010]}}{\lambda_{[001]}} = 1.4 \pm 0.1$

M. Handwerg, *et al.;* Semicond. Sci. Technol. **31**, 125006 (2016).

Temperature dependence:

$$\lambda = \frac{1}{3} C_V(T) \Lambda(T) v_s$$

Solid line:

$$C_V \cdot \Lambda \propto T^m$$
 with $m = 1.3 \pm 0.1$

phonon-phonon-Umklapp-scattering:

Comparision: Thermal conductivity λ

J. Boy, PhD thesis (2023)

Thermal transport in ß-Ga₂O₃ single crystals

Phonon mean free path

Thermal transport in β -Ga₂O₃ single crystals + homoepitaxial films

Phonon scattering mechanisms

Reduced by...

Temperature

Expitaxy

Homoepitaxy

Thermal transport in thin films

Summary

Mg-doped insulating β -Ga₂O₃ bulk crystals and homo-epi films

• RT:
$$\lambda_{[100]} = 11 \pm 1$$
, $\lambda_{[010]} = 29 \pm 2$ and $\lambda_{[001]} = 21 \pm 2$ W/(mK)

- Phonon-transparent interface in homoepitaxial films
- Ballistic phonon transport at low temperatures

A remark on polycrystalline films...

• thermal conductivity is decreased due to a reduced phonon mean free path.

M. Handwerg, *et al.;* Semicond. Sci. Techn. **30**, 024006 (2015).
M. Handwerg, *et al.;* Semicond. Sci. Techn. **31**, 125006 (2016).
R. Mitdank, *et al.;* Phys. Stat. Sol., A **211**, 543-549 (2014).
R. Ahrling, PhD Thesis (2023)

Thermoelectric properties

Thermoelectric effects in semiconductors

Thermal gradient: ΔT Electric field occurs by two processes:

Thermoelectric effects in semiconductors

Seebeck coefficient:

$$S = -\frac{U_{\rm th}}{\Delta T} = S_{\rm d} + S_{\rm PD}$$

thermodiffusion:

$$S_{\rm d} = -rac{k_{\rm B}}{e} \left(r+rac{5}{2}-\eta
ight)$$

Stratton, Phys. Rev. 126, 2002 (1962).

phonon drag:
$$S_{\rm PD} = -\frac{v^2}{T} \cdot \frac{1}{\mu_{\rm AP}} \cdot \tau_{\rm Ph.}$$

Herring, Phy. Rev. 96, 1163 (1954).

Hutson, JAP **32**, 2287 (1961). Smith and Butcher, J. Physics: Cond. Mat. **2**, 2375–2382 (1990).

Phonon drag contribution to the Seebeck coefficient

Herring, Phy. Rev. **96**, 1163 (1954). Hutson, JAP **32**, 2287 (1961). Smith and Butcher, J. Physics: Cond. Mat. **2**, 2375–2382 (1990).

Thermoelectricity: Full "zoo" of scattering mechanisms

Reduced by...

Homoepitaxial films of ß-Ga2O3

→ Selection of in-plane phonons for phonon-drag effects by choosing a film thickness below the phonon mean-free path

Homoepitaxial films of ß-Ga2O3:

Electrical conductivity

Charge carrier density

Mobility

J. Boy, et al., APL Mater. **7**, 022526 (2019). J. Boy, PhD Thesis (2022)

Homoepitaxial films of ß-Ga2O3:

Stratton, Phys. Rev. 126, 2002 (1962).

FIG. 3. (a) Reduced chemical potential η in units of μ V/K and (b) scattering factor *r* as a function of temperature as derived from the charge carrier density *n* and mobility μ .

J. Boy, et al., APL Mater. 7, 022526 (2019).

Thermoelectric micro measurement platform

Heater lines

J. Boy, et al., APL Mater. 7, 022526 (2019).

Giant phonon drag increase in β – Ga₂O₃ homoepitaxial thin films

Summary - Thermoelectric properties

Phonon-drag: A measure of electron-phonon interactions

• Thermoelectric voltages and Seebeck-coefficients

Phonon-transparent interfaces

• Thin film growth by homoepitaxy

Control of the effective electron-phonon interaction cross-section

• Film thickness below phonon mean-free path

Giant-phonon drag increase by design

• selection of relevant in-plane phonons

Outlook: Results are generally valid for a wide range of materials.-

Transport properties of $\beta - Ga_2O_3$ single crystals and thin films

Anisotropic thermal conductivity & ballistic phonon transport Handwerg, et al., Semicond. Sci. Technol. 30, 024006 (2015). Handwerg, et al., Semicond. Sci. Technol. **31**, 125006 (2016). R. Ahrling, PhD Thesis (2023)

Electrical properties & size effects of homoepitaxial thin films & flakes:

R. Mitdank, et al., Phys. Stat. Sol., A 211, 543-549 (2014).
R. Ahrling, et al., Scientific Reports 9, 13149 (2019).

Seebeck coefficients & (Giant-)phonon drag increase by thin film design J. Boy, et al., APL Mater. **7**, 022526 (2019). J. Boy, PhD Thesis (2022)

> saskia.fischer@hu-berlin.de www.physik.hu-berlin.de/gnm