

Barcelona Supercomputing Center Centro Nacional de Supercomputación

HIGH-PERFORMANCE ELECTRONIC-STRUCTURE CALCULATIONS IN THE EXASCALE ERA

Julio Gutiérrez Moreno

julio.gutierrez@bsc.es

05/08/2023

Materials Science at **BSC-CNS** / HoW exciting! 2023

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Supercomputing services to Spanish and EU researchers

R&D in Computer, Life, Earth and Engineering Sciences

PhD programme, technology transfer, public engagement

HPC: An enabler for all scientific fields

Materials, Chemistry & Nanoscience Engineering

Astro, High Energy & Plasma Physics

Life Sciences & Medicine

Advances leading to:

- Improved Healthcare
- Better Climate Forecasting
- Superior Materials
- More Competitive Industry

Earth Sciences

MareNostrum 4

Total peak performance: 13,9 Pflops

R E S

RED ESPAÑOLA DE

SUPERCOMPUTACIÓN

Access: bsc.es/res-intranet

General Purpose Cluster: MN4 CTE-Power: MN4 CTE-ARM: MN4 CTE-AMD: 11.15 Pflops1.57 Pflops0.65 Pflops0.52 Pflops

Access: prace-ri.eu/hpc_acces

Barcelona Supercomputing Center Centro Nacional de Supercomputación

MareNostrum 1 2004 – 42,3 Tflops 1st Europe / 4th World MareNostrum 2 2006 – 94,2 Tflops 1st Europe / 5th World MareNostrum 3 2012 – 1,1 Pflops 12th Europe / 36th World MareNostrum 4 2017 – 11,1 Pflops 2nd Europe / 13th World

Exascale is (almost) here

- Frontier @ Oak Ridge National Lab
- 1.102.000.000.000.000 FLOP/S
- 8.730.112 cores (8.138.240 accelerated)

• 21,1 MW

EuroHPC pre-exascale supercomputers : LUMI, LEONARDO and MARENOSTRUM 5 ...

... and petascale: VEGA, MELUXINA, KAROLINA, DISCOVERER and DEUCALION

MareNostrum 5: European pre-exascale HPC

314 Petaflops peak performance (314 x 10¹⁵)

- Will facilitate world-changing scientific breakthroughs like the creation of digital twins and the advancement of precision medicine
 - Total investment: >200 M€

Barcelona

Center

Supercomputing

Centro Nacional de Supercomputación

The acquisition and operation of the EuroHPC supercomputer is funded jointly by the EuroHPC Joint Undertaking, through the European Union's Connecting Europe Facility and the Horizon 2020 research and innovation programme, as well as the Participating States Spain, Portugal, and Turkey

Generalitat de Catalunya Departament de Recerca

i Universitats

Hosting Consortium:

Turkey

UNIVERSITAT POLITÈCNIC

DE CATALUNYA

Portugal

Spain

BSC

The end of Dennard's & Moore's scaling?

50 Years of Microprocessor Trend Data

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2021 by K. Rupp

JUPITER: The Arrival of Exascale in Europe

DFT & beyond: The NOMAD CoE

CHALLENGES IN MATERIALS SIMULATIONS

So far, Density Functional Theory has been the workhorse of ab initio computational materials

Many materials and/or properties require methods better than DFT

• Energy research, optics...

Complex systems require larger simulation cells

- ... and/or better methodologies
 - Green's function (GW), Coupled cluster theory
 - Larger computational cost than DFT

Source: Matthias Scheffler (FHI) NOMAD-CoE

Workflows & extreme data

Materials science workflow

- Multi-tiered / multi-scale interfaces
- Large-scale calculation
- Modular codes
- Interoperability traits
- Resilience & provenance
- High throughput computations

Goal of exascale (some numbers)

Exascale-enabled codes: **large scale MPI parallelism** (~10K tasks)

+ GPU

Accelerators for exascale:

• NVIDIA A100 / H100

1 card ~25TFLOPS

Goal ~10K cards!

AMD Instinct MI200 / MI300

Quasi-particle corrections on 4-layer GrCo. The test involves the evaluation of a response function, of the HF self-energy and of the correlation part.

Code optimization: SIESTA

Identify expensive section(s): **solver** typically takes >90% the CPU time

- Use of high-performing libraries
- Portable to (pre)-exascale

ELSI library: ELPA, PEXSI... Support new architectures: AMD GPUs

1000 CPU

GPU acceleration with ELSI-ELPA in Marconi-100

(Some) Challenges at the Exascale

- Abrupt technology changes
- Hardware heterogeneity
 - CPUs, GPUs, APUs...
 - HBM, SSD...
- Level of parallelism
 - O(10¹⁸) flops/s, Bytes
- Novel numerical approaches
 - Low scaling algorithms, highly scalable computations, mixed precision
- Modularity
 - Single simulation \rightarrow integrated workflows
 - Simulation + AI + Data Analytics + ...

N. Eicker et al. Concurrency and comp. 28 (2016) 2394

- Resilience
 - Technical support for codes on exascale systems
 - Deployment and tuning codes and workflows
- Programming Performance Portability
 - MPI, OpenMP, CUDA, OpenACC, HIP, OneAPI ...

The Babel Tower of Programming Languages

In the absence of suitable libraries... which programming model?

https://x-dev.pages.jsc.fz-juelich.de/2022/11/02/gpu-vendor-model-compat.html

- Full vendor support
- Indirect, but comprehensive support, by vendor
- Vendor support, but not (yet) entirely comprehensive
- Comprehensive support, but not by vendor

- Limited, probably indirect support -- but at least some
- No direct support available, but of course one could ISO-C-bind your way through it or directly link the libraries
- C C++ (sometimes also C)
- F Fortran

- Vendor-locked & architecture-dependent models!
- Data movements? CPU-GPU comms?
- New architectures? (e.g. NVIDIA Grace-Hopper)

Co-design: developer objectives

- Prepare codes for (post)exascale and modular HPC computing
 - Processor level (CPU & GPU), memory characteristics (heterogeneity, bandwidth), vector length...
 - Node level: # sockets/accelerators per node
- Provide technology developers with realistic data
 - European R&D projects (EUPEX, EUPilot): Co-design is becoming more accessible
 - Developers of system software (DEEP), processors & platforms (EPI)

Get ready for advance hardware platforms

- Arm (Nvidia, SiPearl RHEA), EU RISC-V ecosystem (co-design at the Instruction Set Architecture level)
- New accelerators, neuromorphic, quantum...

Co-design: applications for materials science

- Materials science is a very strong and relevant use-case
- Ab initio materials science codes should influence system design/procurements
- Influencing hardware design is difficult, especially for the HPC community
 - Examples of good practice: EPI, RISC-V, Fugaku
- Potential as a co-design vehicle for next-gen hardware
 - Market is more malleable
 - Interaction with EU developed exascale prototypes
 - Prepare codes for future hardware

Profiling and analysing performance metrics of production codes

Modifying kernels code to run efficiently on target architectures

Co-design Cycle Isolating relevant computation kernels into mini-apps

Providing performance insights to developers and HPC manufacturers

Distributing mini-apps to different HPC architectures

Performance analysis

Mini-app development

Trace of the first thread - first process

Ground state GW

Look deeper: *calcepsilon* & *calcselfc* \rightarrow iteratively calls to *calcminm2* + *zgemm*

exciting

zgemm is called for big matrices (from *calcepsilon* and *calcselfc*)

many times by **calcminm2** with a small size

exC

3214 s (4 MPI processes & 48 threads)

isolates subroutines: expand_products (including calcminm2, ~80% runtime) and calcmwm

Developed a new checkpointing based on HDF5 & binary

432 s (1 MPI & 48 threads)

calcmwm_	102,264,974 ns
calcminc_	354,683,952 ns
expand_products_	4,319,179,072 ns
mod_miniemm_tmp_	13,634,904,347 ns
mod_miniemv_tmp_	26,600,842,301 ns
calcminm2_	394,802,263,730 ns
Total	439,814,138,376 ns
Average	73,302,356,396 ns
Maximum	394,802,263,730 ns
Minimum	102,264,974 ns
StDev	144,072,737,255 ns
Avg/Max	0

GW implementation

- exciting
- Abinit
- FHI-AIMS

ELPA lib eigensolver

≡ Q Search GitL	ab /					• • •	11 ~	☑ (?•~	*
ini-apps nation	-0- 191 Commits 89 4 Branches	apps ⊕ eave project Ø 5 Tags ☐ 1.2 GB Pro	ject Storage			۵ ~	☆ Star	0 8	Fork 0
0 ests 0 Compliance s d registries	Added instructions to do imasmagr authored 2 wee	wload the checkpoints ks ago						ecf18ea	ae [°
	master v nomad-mini-apps	/ + →	Add CONTRIBUTING	⊕ Add Kubernetes cluster	€ Set up Cl/CD	Find file	Web IDE	re Integration	Clone 🗸
	Name		Last commit					Las	t update
	🗅 benchmarks		Changed checkpoints	from HDF5 to Binary				3 w	eeks ago
	🗅 results		Added results director	у				1 m	onth ago
	🗅 src		Added some informati	ve prints to exciting and abinit i	mini			2 w	eeks ago
	♦ .gitignore		We have moved find_p	package to the root CMAKE file				1 m	onth ago
	E CMakeLists.txt		This projects does not	depend on HDF5 anymore				3 w	eeks ago
	M≉ README.md		Added instructions to	dowload the checkpoints				2 w	eeks ago

Tested dependencies on:

• MN4: Intel, GNU

Associations Assoc

NOMAD m
Project infor

Repository
 Issues
 Merge reque
 CI/CD

♥ Security and♥ Deployment

Packages and
 Infrastructure
 Monitor

Hundry Analytics
 □ Wiki

Snippets

• CTE POWER (IBM Power-9) : GNU, XLF, PGI

The NOMAD mini-apps suite

• KAROL1NA: Intel, AMD, NVIDIA

Take-home messages

- The (post)exascale era is **full of technical challenges, but also opportunities**
- Work on **performance portability**
- Profit performance from: **accelerators**, network... but be careful with GPU-to-GPU communications
- Implement modular codes (interoperability) & integrate on workflows
- Enforce the application's robustness & resilience (check-pointing)
- Machine learning

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Thank you!

Connecting and Coordinating *** European Research and Technology Development with Japan

PCI2023-143426 funded by MCIN/AEI/10.13039/501100011033

NOVEL MATERIALS DISCOVERY

Generalitat de Catalunya Departament de Recerca i Universitats

Unió Europea Fons Europeu de Desenvolupament Regional

julio.gutierrez@bsc.es

materialsmodelling.wordpress.com