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Very basic stuff

The Hamiltonian of everything

First, we have the kinetic energy:

T = −
1
2

n∑
i=1

∇2
i −

1
2

N∑
µ=1

∇2
µ

Mµ
(1)

And the electron-ion interaction

Ve−n = −
n∑

j=1

N∑
ν=1

Zν
|rj − Rν |

(2)

Finally, the electron-electron and ion-ion interactions

Ve−e =
n∑

j=1

n∑
k=j+1

1
|rj − rk |

Vn−n =
N∑
ν=1

N∑
µ=ν+1

ZνZµ
|Rµ − Rν |

(3)
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Very basic stuff

The Born-Oppenheimer approximation

We define the electronic Hamiltonian to be

Hnf(r̄ ; R̄) = Te(r̄) + Ve−e(r̄) + Ve−n(r̄ ; R̄) (4)

with the eigenspectrum

Hnf(r̄ ; R̄)Φm(r̄ , σ̄; R̄) = Em(R̄)Φm(r̄ , σ̄; R̄) (5)

This equation will be “density-functionalized” in the following. We now expand the many-body
wave-function in the complete basis set formed by the Φm

Ψi (r̄ , σ̄; R̄) =
∑

m
Θim(R)Φm(r̄ , σ̄; R) (6)

If we restrict this sum just to the first term m = 0, we obtain for the ionic equation[
TN (R̄) + U(R̄)

]
Θi (R̄) = Ei Θi (R̄) (7)
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Very basic stuff

The Harmonic expansion

We now assume that the ions are close to their equilibrium position R̄0, and that they describe
small oscillations around those positions. We can then expand the potential felt by the ions in a
Taylor series:

U(R̄) = U(R̄0) +
1
2

∑
lµ,l′ν

∂2U(R̄)

∂u(lµ)∂u(l ′ν)

∣∣∣∣∣
0

u(lµ)u(l ′ν) + · · · (8)

where the displacements are defined as R(lµ) = R0(lµ) + u(lν). We can also expand the
electron-ion potential appearing in the electronic equation

Ve−n(r̄ ; R̄) = Ve−n(r̄ ; R̄0) +
∑
lµ

∂Ve−n(r̄ ; R̄)

∂u(lµ)

∣∣∣∣∣
0

u(lµ) + · · · (9)

The second term in the right-hand side is nothing more than the electron-phonon interaction.

M. Marques Phonons 4 / 20



Very basic stuff

Semiclassical approach

We can rewrite the second order term in the standard way:

V =
1
2

∑
lµ,l′ν

∑
α,β

Φα,β(lµ, l ′ν)uα(lµ)uβ(l ′ν) (10)

The function Φ is called the force constants matrix, and is the 3D equivalent of the spring force
constant in the harmonic oscillator. The equation of motion then reads:

Mµüα(lµ) = −
∑
l′ν,β

Φα,β(lµ, l ′ν)uα(l ′ν) (11)

The function φ has a couple of very useful symmetries:

Lattice translational invariance, which allows us to reduce the problem to 3s variables.

Infinitesimal translational invariance, which means that there is no force when all atoms
are displaced:

∑
l′ν Φα,β(lµ, l ′ν) = 0.
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Very basic stuff

Normal modes

Using Bloch’s theorem, we can write the ansatz

uα(lµ) =
1√
Mµ

∑
q

ũα(q;µ)ei(q.r(l)−ωt) (12)

Inserting it in the equation of motion we arrive at

ω2
jq ũj

α(qµ) =
∑
νβ

Dαβ(q;µν)ũj
β(qν) (13)

where D, the dynamical matrix is essentially the Fourier transform of Φ

Dαβ(q;µν) =
1√

MµMν

∑
l′

Φαβ(0µ; l ′ν)eiqr(l′) (14)

The relation between q and ω is called the dispersion relation. For a system with s atoms in the
unit cell, there will be 3 acoustic branches (where w = 0 for q = 0) and 3s-3 optical branches.
From now we will call the (normalized) eigenvectors of the equation ej (q;µ). This are also called
the polarization vectors of the phonons.
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Very basic stuff

Quantum mechanical approach
The ionic Schrödinger equation can be written as

∑
lµ

p(lµ) · p(lµ)

2Mµ
+

1
2

∑
lµ,l′ν

∑
αβ

Φα,β(lµ, l ′ν)uα(lµ)uβ(l ′ν) (15)

we now perform a canonical transformation to the so-called normal coordinates

u(lµ) =
1
√

NΩ

∑
q

Q(qµ)eiqr(l) (16)

p(lµ) =
1
√

NΩ

∑
q

P(qµ)eiqr(l) (17)

We make a further transformation, and include the polarization vector

Qj (q) =
∑
µ

√
Mµe∗j (q;µ) · Q(qµ) (18)

Pj (q) =
∑
µ

1√
Mµ

ej (q;µ) · P(qµ) (19)
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Very basic stuff

Second quantization

Finally, we can define creation and annihilation operators

âq,j =
1√

2ωq;j
Pj (q)− i

√
ωq,j

2
Q†j (q) (20)

â†q,j =
1√

2ωq;j
P†j (q) + i

√
ωq,j

2
Qj (q) (21)

With these definitions, the Hamiltonian becomes diagonal

Hions =
∑
q,j

ωq,j

(
a†q,j aq,j +

1
2

)
(22)

Finally, the atomic displacement vectors can be written in terms of the operators

u(lµ) = −
i

√
NΩ

∑
q,j

1√
2Mµωq,j

eiq·r(l)ej (q;µ)
[
â†q,j − â−q,j

]
(23)
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Very basic stuff

Phonon dispersions - an example

ab-initio phonon dispersion of Silicon (Giannozzi et al, PRB 43, 7231 (1991)). The points
represent experimental values (Nilson & Nelin, PRB 6, 3777 (1972)).
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Very basic stuff

Some definitions for the electron-phonon term
Moving also the electrons to second-quantization, we can write the electron-phonon term as∑

q,j

∑
σ

∫
d3r ψ̂†σ(r)ψσ(r)Vq,j

[
a†q,j − a−q,j

]
(24)

where the electron-phonon coupling constant is

Vq,j (r) =
∑
lµ

1√
2Mµωq,j

eiq·r(l)ej (q;µ)
∂Ve−n(r̄ ; R̄)

∂u(lµ)

∣∣∣∣∣
0

(25)

what in the end will enter the equations are the matrix elements of this quantity between
Kohn-Sham states

gq,j
k+q,i′;k i =< k + q, i ′|Vq,j (r)|k i > (26)

As we will see, often this quantity is averaged over the Fermi surface to yield the so-called
life-times

γq,j = 2πωq,j
∑
k ii′
|gq,j

k+q,i′;k i |
2δ(εk i − εF )δ(εk+qi′ − εF ) (27)

and finally, the Eliashberg function

α2F (ω) =
1

2πN(εF )

∑
q,j

γq,j

ωq,j
δ(ω − ωq,j ) (28)
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Very basic stuff

Response functions
As we see, all these quantities are simply given by derivatives of either the total energy or the
Kohn-Sham potential with respect to the displacement of the ions. They fall into the cathegory of
the so-called linear response properties of the system, where one measures the response of the
system to an external infinitesimal perturbation.
These perturbations can be

Electric (e.g., polarizabilities, absorption, florescence ...)

V (r) = r i

Magnetic (e.g., susceptibilities, NMR ...)

V (r) = Li

Atomic Displacements (e.g., phonons ...)

V (r) =
∂

∂R i

These quantities can be calculated either from finite differences (e.g., frozen phonons), from
molecular dynamics spectral analysis methods, or by perturbative approaches. This latter is by
far the most efficient method, and is what is implemented in most software packages (ABINIT,
PWSCF, etc.)
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Very basic stuff

Perturbation theory - I
We want to study a system where we apply a small external perturbing potential. This can be
expanded in a Taylor series

v(λ) = v (0) + λv (1) + λ2v (2) + · · · (29)

Likewise the Hamiltonian has the expansion

H(λ) = H(0) + λH(1) + λ2H(2) + · · · (30)

The (Kohn-Sham) equation for the perturbed system reads

H(λ)|ψi (λ)〉 = εi (λ)|ψi (λ)〉 (31)

we now Taylor expand both the eigenvalues and eigenfunctions

|ψi (λ)〉 = |ψ(0)
i 〉+ λ|ψ(1)

i 〉+ λ2|ψ(2)
i 〉+ · · · (32)

εi (λ) = ε
(0)
i + λε

(1)
i + λ2ε

(2)
i + · · · (33)

Inserting all these definitions in the Kohn-Sham equation, we obtain[
H(0) − ε(0)

i

]
|ψ(0)

i 〉+ λ
{[

H(0) − ε(0)
i

]
|ψ(1)

i 〉+
[
H(1) − ε(1)

i

]
|ψ(0)

i 〉
}

+ λ2 · · · = 0 (34)
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Very basic stuff

Perturbation theory - II

Separating the different powers of λ we obtain in 0th order

H(0)|ψ(0)
i 〉 = ε

(0)
i |ψ

(0)
i 〉 (35)

which is just the standard Kohn-Sham equation. In 1st order[
H(0) − ε(0)

i

]
|ψ(1)

i 〉 = −
[
H(1) − ε(1)

i

]
|ψ(0)

i 〉 (36)

Now, expanding also the orthonormality condition 〈ψi (λ)|ψi (λ)〉 = 1, we obtain

〈ψ(0)
i |ψ

(0)
i 〉+ λ

(
〈ψ(1)

i |ψ
(0)
i 〉+ 〈ψ(0)

i |ψ
(1)
i 〉
)

+ λ2 · · · = 1 (37)

From which we get

〈ψ(0)
i |ψ

(0)
i 〉 = 1 (38)

〈ψ(1)
i |ψ

(0)
i 〉+ 〈ψ(0)

i |ψ
(1)
i 〉 = 0 (39)
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Very basic stuff

Perturbation theory - III
Multiplying by 〈ψ(0)

i | we obtain

〈ψ(0)
i |H

(0) − ε(0)
i |ψ

(1)
i 〉 = 〈ψ(0)

i |H
(1) − ε(1)

i |ψ
(0)
i 〉 (40)

ε
(0)
i 〈ψ

(0)
i |ψ

(1)
i 〉 = 〈ψ(0)

i |H
(1)|ψ(0)

i 〉 − ε
(1)
i (41)

from which we can get an expression for ε(1)
i

ε
(1)
i = 〈ψ(0)

i |H
(1)|ψ(0)

i 〉 (42)

Using this in the equation for |ψ(1)
i 〉[

H(0) − ε(0)
i

]
|ψ(1)

i 〉 = −
[
H(1) − ε(1)

i

]
|ψ(0)

i 〉 (43)

= −H(1)|ψ(0)
i 〉+ |ψ(0)

i 〉〈ψ
(0)
i |H

(1)|ψ(0)
i 〉 (44)

= −
(

1− |ψ(0)
i 〉〈ψ

(0)
i |
)

H(1)|ψ(0)
i 〉 (45)

This is the so-called Sternheimer equation. As an exercise, you can expand |ψ(1)
i 〉 in the

complete basis set |ψ(0)
i 〉 and recover the sum-over-states formula of perturbation theory.
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Very basic stuff

What is H(1)

Do not forget that we are doing Kohn-Sham, so the variation of the Hamiltonian is

H(1) =
∂H(λ)

∂λ
(46)

= v (1) + v (1)
Hxc (47)

as the Hartree and exchange-correlation potential is a functional of the density, we can use the
chain rule to calculate v (1)

Hxc

v (1)
Hxc(r) =

∫
d3r ′

δvλHxc(r)

δnλ(r ′)

∣∣∣∣∣
λ=0

∂nλ(r ′)
∂λ

(48)

The first derivative is usually written as

δvλHxc(r)

δnλ(r ′)
=

1
|r − r ′|

+ fxc(r , r ′) (49)

And the derivative of the density is simply

∂nλ(r)

∂λ
= n(1)(r) =

∑
i

ψ
(1)∗
i (r)ψ

(0)
i (r) + ψ

(0)∗
i (r)ψ

(1)
i (r) (50)
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Very basic stuff

Eliashberg Theory - I
We write the Hamiltonian in the basis of electronic eigen-states. We will also ignore the band
index.

Ĥ =
∑

k

ξk : Ψ̂†k τ3Ψ̂k : +
∑
kk ′

∑
qλ

gkk ′
λq : Ψ̂†k τ3Ψ̂k ′ : Φ̂λq , (51)

Where we defined the field-operators in Nambu-Gorkov space

Ψ̂(r , τ) =

(
ψ̂↑(r , τ)

ψ̂†↓(r , τ)

)
, (52)

and the (matrix) Green’s function reads

Ḡ(12) = −〈T̂ Ψ̂(1)⊗ Ψ̂†(2)〉 (53)

Now we perform perturbation theory. The unperturbed Green’s function is

Ḡ−1
0 (k , ωn) = iωnτ0 − ξkτ3 , (54)

where ξk = εk − µ, and τi are the Pauli matrices. Dyson’s equation is, as usual

Ḡ−1(k , ωn) = Ḡ−1
0 (k , ωn)− Σ̄(k , ωn) . (55)
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Very basic stuff

Eliashberg Theory - II

We expand the self-energy using the Pauli matrices

Σ̄(k , ωn) = [1− Z (k , ωn)] iωnτ0 + φ1(k , ωn)τ1 + φ2(k , ωn)τ2 + χ(k , ωn)τ3 , (56)

and solve Dyson’s equation to get Ḡ(Z , φ, χ).
Migdal’s theorem tells use that vertex corrections are unimportant, so we approximate the
self-energy by

Σ̄(k , ωn) =� = −
1
β

∑
k ′ω′n

∑
λq

∣∣∣gkk ′
λq

∣∣∣2 τ3Ḡ(k ′, ω′n)τ3Dλq(ωn − ω′n) (57)

Putting everything together, we arrive at 4 coupled integral equations. E.g., the equation for Z
reads (Ξ = [Zω]2 + [ξ + χ]2 + φ2

1 + φ2
2)

[1− Z (k , ωn)]ωn =
1
β

∑
k ′ω′n

∑
λq

Z (k ′, ω′n)ω′n
Ξ(k ′, ω′n)

∣∣∣gkk ′
λq

∣∣∣2 −2Ωλq

(ωn − ω′n)2 + Ω2
λq

(58)
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Very basic stuff

Eliashberg Theory - III

These equations are too complicated to solve. Let’s do some approximations

Neglect χ, as it only gives a correction to µ.

k dependence of Z and φ1,2 is small compared to ξk , so replace them by their value at the
Fermi surface.

Average the electron-phonon coupling constants over the Fermi surface.

A bit of algebra, and we arrive at the Eliashberg equations in frequency space

∆(ωn)Z (ωn) =
π

β

∑
ω′n

λ(ωn − ω′n)
∆(ω′n)√

ω′2n + |∆(ωn)|2
(59)

[1− Z (ωn)]ωn = −
π

β

∑
ω′n

λ(ωn − ω′n)
ω′n√

ω′2n + |∆(ωn)|2
, (60)

with
λ(νn) =

∫
dΩ α2F (Ω)

2Ω

ν2
n + Ω2

and ∆(ωn) =
φ1(ωn) + iφ2(ωn)

Z (ωn)
(61)
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Very basic stuff

What about the Coulomb repulsion?

We can include the Coulomb repulsion in the self-energy

Σ̄(k , ωn) =� + � (62)

But

What do we write for the interaction, v , Wstatic, Wdynamic?

But in this case, all the approximations fail, and we are stuck with 4 integral equations in 4
dimensions.

Solution: phenomenological interaction, with strength µ and a certain range.

In this way we arrive at McMillan’s formula

Tc =
〈Ω〉
1.20

e−1.04 1+λ
λ−µ∗ (63)
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Thanks!

Thanks!

Jorge Serrano, PhD Thesis

Savrasov & Savrasov, Phys. Rev. B 54, 16487 (1996)

Gonze and Baroni stuff for DFPT

Scalapino and Allen & Mitrovic reviews
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