http://exciting-code.org



# Structure Optimization and Elasticity Pasquale Pavone and the exciting team

Humboldt-Universität zu Berlin, Germany

## Outline

#### **Structure optimization**

Cell optimization

Internal degrees of freedom

**Elasticity** 

# Structure Optimization

#### **Structure Optimization**



# Which configuration has the lowest DFT total energy?

#### **Structure Optimization**



### **Energy Minimization**



## **Energy Minimization**



#### Lattice (Cell) Optimization



### **Equation of State (EOS)**

E = E(V)

Murnaghan EOS

**Birch-Murnaghan EOS** 

**Vinet EOS** 

Polynomial EOS

#### **Birch-Murnaghan EOS**

$$B_0 = -V\left(\frac{\partial P}{\partial V}\right)_{P=0}$$
  $B'_0 = \left(\frac{\partial B}{\partial P}\right)_{P=0}$ 

$$P(V) = rac{3B_0}{2} \left[ \left( rac{V_0}{V} 
ight)^{7/3} - \left( rac{V_0}{V} 
ight)^{5/3} 
ight] \left\{ 1 + rac{3}{4} \left( B_0' - 4 
ight) \left[ \left( rac{V_0}{V} 
ight)^{2/3} - 1 
ight] 
ight\}$$

$$E(V) = E_0 + \frac{9V_0B_0}{16} \left\{ \left[ \binom{V_0}{V}^{2/3} - 1 \right]^3 B'_0 + \left[ \left( \frac{V_0}{V} \right)^{2/3} - 1 \right]^2 \left[ 6 - 4 \left( \frac{V_0}{V} \right)^{2/3} \right] \right\}$$

## **Equation of State of Silver**





**Tool: OPTIMIZE-lattice.sh Example** E = E(V, c/a)-STEP1: opt. V at fixed  $(c/a)_0$ : get  $V_1$ -STEP2: opt. c/a at fixed  $V_1$ : get  $(c/a)_2$ -STEP3: opt. V at fixed  $(c/a)_2$ : get  $V_3$ 

## **Energy Minimization: Relaxation**



#### **Internal degree of freedom: atomic positions**

# Relaxation methods in exciting



#### harmonic

# bfgs









#### A parabola has a constant 2nd derivative

bfgs

#### Broyden, Fletcher, Goldfarb, Shanno





bfgs

#### **Extension to N-degrees of freedom:**

- Similar to harmonic

- Hessian matrix vs. 2nd derivative

Very efficient if close to minimum

– Default in exciting

#### input.xml

#### <input>

...

<structure ... />

<groundstate ... />

<relax method="bfgs"/>

</input>

#### **Relaxation of Pyridine**



# Elasticity

#### What Is Elasticity?

Description of distorsions of rigid bodies and of the energy, forces, and fluctuations arising from these distorsions.

Describes mechanics of extended bodies from the macroscopic to the microscopic.

Generalizes simple mechanical concepts

Force → Stress

Displacement → Strain

#### **Strain: State of deformation**





#### Homogeneous strain

r = unstrained position  $r_s =$  strained position

$$r_{\rm s} = F \cdot r = (1 + \varepsilon) \cdot r$$

- **F** = Deformation Matrix
- $\varepsilon$  = Physical Strain Matrix

#### **Voigt notation**



**Representative vector:** 

$$\boldsymbol{\varepsilon} = (\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4, \varepsilon_5, \varepsilon_6)$$

## **Strain definitions**

#### **Physical strain:**



## **Examples of strain (2D)**



#### **Uniaxial strain in graphene**



#### Linear elastic response

Low pressure expansion in terms of Lagrangian strain  $\eta$  :

$$E(\boldsymbol{\eta}) = E_0 + \frac{V_0}{2!} \boldsymbol{\eta} \cdot \boldsymbol{C^{(2)}} \cdot \boldsymbol{\eta} + \cdots$$

 $E_0$ ,  $V_0 =$  Reference (equilibrium) energy and volume

#### Linear elastic constant (2nd order):

#### Stress



 $\boldsymbol{\tau} = \det(\mathbf{1} + \boldsymbol{\varepsilon}) \ (\mathbf{1} + \boldsymbol{\varepsilon})^{-1} \cdot \boldsymbol{\sigma} \cdot (\mathbf{1} + \boldsymbol{\varepsilon})^{-1}$ 

#### Stress vs strain

Using the definition of Lagrangian Stress and the expansion of the Elastic Energy in terms of Lagrangian strains:

 $\tau_{\alpha} = \frac{1}{V_0} \frac{\partial E(\boldsymbol{\eta})}{\partial \eta_{\alpha}}$ 

$$\boldsymbol{\tau}(\boldsymbol{\eta}) = \boldsymbol{C^{(2)}} \cdot \boldsymbol{\eta} + \frac{1}{2!} \boldsymbol{\eta} \cdot \boldsymbol{C^{(3)}} \cdot \boldsymbol{\eta} + \cdots$$

#### **Generic strain deformation**



#### **Elastic constants calculations**



### **Numerical calculations**



### Numerical derivatives: Error sources



> Numerical errors in fitting procedure: **Polynomial order** 

calculated points

## Numerical derivatives: A toy model



# Numerical determination of A<sub>2</sub>



#### Numerical derivatives: Error sources



# Numerical determination of A<sub>2</sub>



# Graphene (100) Strain



# Number of independent elastic constants

| Structure     | Space group<br>number | C <sub>αβ</sub> | C <sub>αβγ</sub> |
|---------------|-----------------------|-----------------|------------------|
| Cubic I       | 207 to 230            | 3               | 6                |
| Cubic II      | 195 to 206            | 3               | 8                |
| Hexagonal I   | 177 to 194            | 5               | 10               |
| Hexagonal II  | 168 to 176            | 5               | 12               |
| Trigonal I    | 149 to 167            | 6               | 14               |
| Trigonal II   | 143 to 148            | 7               | 20               |
| Tetragonal I  | 89 to 142             | 6               | 12               |
| Tetragonal II | 75 to 88              | 7               | 16               |
| Orthorhombic  | 16 to 74              | 9               | 20               |
| Monoclinic    | 3 to 15               | 13              | 32               |
| Triclinic     | 1 to 2                | 21              | 56               |



# # ElaStic (talk)

a CELL (talk)

T LayerOptics

**A NOMAD project** 

# **Main ElaStic Reference**

Computer Physics Communications 184 (2013) 1861-1873

Contents lists available at SciVerse ScienceDirect

**Computer Physics Communications** 

journal homepage: www.elsevier.com/locate/cpc

ElaStic: A tool for calculating second-order elastic constants from first principles

Rostam Golesorkhtabar<sup>a,b,\*</sup>, Pasquale Pavone<sup>a,b,1</sup>, Jürgen Spitaler<sup>a,b</sup>, Peter Puschnig<sup>a,2</sup>, Claudia Draxl<sup>a,1</sup>

<sup>a</sup> Chair of Atomistic Modelling and Design of Materials, Montanuniversität Leoben, Franz-Josef-Straße 18, A-8700 Leoben, Austria <sup>b</sup> Materials Center Leoben Forschung GmbH, Roseggerstraße 12, A-8700 Leoben, Austria

#### **Computer Physics Communications 184 (2013) 1861**



COMMUNICATION



# ElaStic





- LATTICE OPTIMIZATION:
- [b] Volume optimization for cubic systems
  [b] Simple examples of structure entimization
- [b] Simple examples of structure optimization
- [b] General lattice optimization
- ELASTIC PROPERTIES:

[b] Energy vs. strain calculations
[a] How to calculate the stress tensor

#### TOOLS AND PACKAGES

[a] ElaStic@exciting: How to calculate elastic constants

## The Last Slide: We are still so Excited!

