http://exciting-code.org

Structure Optimization

and Elasticity

Pasquale Pavone and the exciting team
Humboldt-Universität zu Berlin, Germany

Outline

7 Structure optimization

> Cell optimization

$>$ Internal degrees of freedom
每 Elasticity

Structure Optimization

Structure Optimization

Atomic configurations:

R_{1}

R_{2}

R_{3}

Which configuration has the lowest DFT total energy?

Structure Optimization

皃 (a): Cell shape

stress

有 (b): (Relative) atomic positions

force

Energy Minimization

parabola

paraboloid

Energy Minimization

Lattice (Cell) Optimization

$$
\begin{aligned}
& E=E(\boldsymbol{a}, \boldsymbol{b}, c, \alpha, \beta, \gamma) \\
& E=E(V, b / a, c / a, \alpha, \beta, \gamma)
\end{aligned}
$$

Equation of State (EOS)

$$
E=E(V)
$$

\square Murnaghan EOS
区 Birch-Murnaghan EOS
\square Vinet EOS
\square Polynomial EOS

Birch-Murnaghan EOS

$$
B_{0}=-V\left(\frac{\partial P}{\partial V}\right)_{P=0} \quad B_{0}^{\prime}=\left(\frac{\partial B}{\partial P}\right)_{P=0}
$$

$$
\begin{aligned}
& P(V)=\frac{3 B_{0}}{2}\left[\left(\frac{V_{0}}{V}\right)^{7 / 3}-\left(\frac{V_{0}}{V}\right)^{5 / 3}\right]\left\{1+\frac{3}{4}\left(B_{0}^{\prime}-4\right)\left[\left(\frac{V_{0}}{V}\right)^{2 / 3}-1\right]\right\} . \\
& \left.E(V)=E_{0}+\frac{9 V\left[B_{0}\right.}{16}\left\{\left[\left(\frac{V_{0}}{V}\right)^{2 / 3}-1\right]^{3}\right]+\left[\left(\frac{V_{0}}{V}\right)^{2 / 3}-1\right]^{2}\left[6-4\left(\frac{V_{0}}{V}\right)^{2 / 3}\right]\right\} .
\end{aligned}
$$

Equation of State of Silver

Lattice Optimization in excl 1 ting

\square Tool: OPTIMIZE-lattice.sh
\square Example $E=E(V, c / a)$

- STEP1: opt. V at fixed $(c / a)_{0}$: get V_{1}
-STEP2: opt. c / a at fixed $V_{1}:$ get $(c / a)_{2}$
- STEP3: opt. V at fixed $(c / a)_{2}$: get V_{3}

Energy Minimization: Relaxation

geometry
Internal degree of freedom: atomic positions

Relaxation methods in excit ting

\square newton
\square harmonic
\square bfgs

newton

newton

newton (steepest descent)

harmonic

A parabola has a constant 2nd derivative

bfgs

Broyden, Fletcher, Goldfarb, Shanno

bfgs

bfgs

\square Extension to N -degrees of freedom:

- Similar to harmonic
- Hessian matrix vs. 2nd derivative
- Very efficient if close to minimum
- Default in exciting

input.xml

<input>

<structure ... />
<groundstate ... />
<relax method="'bfgs"/>
</input>

Relaxation of Pyridine

Elasticity

What Is Elasticity?

$>$ Description of distorsions of rigid bodies and of the energy, forces, and fluctuations arising from these distorsions.
$>$ Describes mechanics of extended bodies from the macroscopic to the microscopic.
$>$ Generalizes simple mechanical concepts

Force \rightarrow Stress
Displacement \rightarrow Strain

Strain: State of deformation

Equilibrium:
Zero strain
Zero forces
Zero stress
Zero displacements

Uniaxial strain

Homogeneous strain

$\boldsymbol{r}=$ unstrained position
$\boldsymbol{r}_{\mathbf{s}}=$ strained position

$$
r_{s}=F \cdot r=(1+\varepsilon) \cdot r
$$

$\boldsymbol{F}=$ Deformation Matrix
$\boldsymbol{\varepsilon}=$ Physical Strain Matrix

Voigt notation

$$
\left(\begin{array}{lll}
\varepsilon_{x x} & \varepsilon_{x y} & \varepsilon_{x z} \\
\varepsilon_{x y} & \varepsilon_{y y} & \varepsilon_{y z} \\
\varepsilon_{x z} & \varepsilon_{y z} & \varepsilon_{z z}
\end{array}\right) \equiv\left(\begin{array}{ccc}
\varepsilon_{1} & \varepsilon_{6} / 2 & \varepsilon_{5} / 2 \\
\varepsilon_{6} / 2 & \varepsilon_{2} & \varepsilon_{4} / 2 \\
\varepsilon_{5} / 2 & \varepsilon_{4} / 2 & \varepsilon_{3}
\end{array}\right)
$$

Voigt indices:

Representative vector:

$$
\varepsilon=\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}, \varepsilon_{5}, \varepsilon_{6}\right)
$$

Strain definitions

Physical strain:

$$
r_{s}=(1+\varepsilon) \cdot r
$$

Lagrangian strain:

$$
\eta=\varepsilon+\frac{1}{2} \varepsilon \cdot \varepsilon
$$

$$
\left|\Delta_{s}\right|^{2}-|\Delta|^{2}=\Delta \cdot 2 \eta \cdot \Delta
$$

Examples of strain (2D)

$$
\begin{array}{ll}
\left(\begin{array}{cc}
\varepsilon_{1} & 0 \\
0 & \varepsilon_{1}
\end{array}\right) & \text { Expansion, compression: } \\
\left(\begin{array}{cc}
\varepsilon_{1} & 0 \\
0 & 0
\end{array}\right) & \text { Uniaxial strain: } \\
\left(\begin{array}{cc}
0 & \varepsilon_{6} / 2 \\
\varepsilon_{6} / 2 & 0
\end{array}\right) & \text { Shear strain: }
\end{array}
$$

Uniaxial strain in graphene

Linear elastic response

Low pressure expansion in terms of Lagrangian strain $\boldsymbol{\eta}$:

$$
E(\boldsymbol{\eta})=E_{0}+\frac{V_{0}}{2!} \boldsymbol{\eta} \cdot \boldsymbol{C}^{(2)} \cdot \boldsymbol{\eta}+\cdots
$$

$E_{0}, V_{0}=$ Reference (equilibrium) energy and volume

Linear elastic constant (2nd order):

$$
\boldsymbol{C}^{(2)}=\frac{1}{V_{0}}\left[\frac{\partial^{2} E(\boldsymbol{\eta})}{\partial \boldsymbol{\eta} \partial \boldsymbol{\eta}}\right]_{\boldsymbol{\eta}=0} \quad \begin{gathered}
\text { Diamond } \\
\boldsymbol{C}_{\mathbf{1 1}}, \boldsymbol{C}_{\mathbf{1 2}}, \boldsymbol{C}_{\mathbf{4 4}}
\end{gathered}
$$

Stress

$$
\begin{aligned}
& \text { Physical Stress: } \\
& \sigma_{\alpha}=\frac{1}{V} \frac{\partial E(\varepsilon)}{\partial \varepsilon_{\alpha}}
\end{aligned}
$$

Lagrangian Stress:
$\tau_{\alpha}=\frac{1}{V_{0}} \frac{\partial E(\eta)}{\partial \eta_{\alpha}}$

$$
\boldsymbol{\tau}=\operatorname{det}(\mathbf{1}+\boldsymbol{\varepsilon})(\mathbf{1}+\boldsymbol{\varepsilon})^{-1} \cdot \boldsymbol{\sigma} \cdot(\mathbf{1}+\boldsymbol{\varepsilon})^{-1}
$$

Stress vs strain

Using the definition of Lagrangian Stress and the expansion of the Elastic Energy in terms of Lagrangian strains:

$$
\begin{gathered}
\tau_{\alpha}=\frac{1}{V_{0}} \frac{\partial E(\eta)}{\partial \eta_{\alpha}} \\
\boldsymbol{\tau}(\boldsymbol{\eta})=\boldsymbol{C}^{(2)} \cdot \boldsymbol{\eta}+\frac{1}{2!} \boldsymbol{\eta} \cdot \boldsymbol{C}^{(3)} \cdot \boldsymbol{\eta}+\cdots
\end{gathered}
$$

Generic strain deformation

Elastic constants calculations

Numerical calculations

Numerical derivatives: Error sources

Numerical derivatives: A toy model

Numerical determination of \boldsymbol{A}_{2}

Numerical derivatives: Error sources

Numerical determination of \boldsymbol{A}_{2}

Graphene (100) Strain

Number of independent elastic constants

Structure	Space group number	$C_{\alpha \beta}$	$C_{\alpha \beta \gamma}$
Cubic I	207 to 230	3	6
Cubic II	195 to 206	3	8
Hexagonal I	177 to 194	5	10
Hexagonal II	168 to 176	5	12
Trigonal I	149 to 167	6	14
Trigonal II	143 to 148	7	20
Tetragonal I	89 to 142	6	12
Tetragonal II	75 to 88	7	16
Orthorhombic	16 to 74	9	20
Monoclinic	3 to 15	13	32
Triclinic	1 to 2	21	56

exCit ting: Tools \& more

7 ElaStic (talk)

7 CELL (talk)

 7 LayerOptics
Main ElaStic Reference

$$
\text { Computer Physics Communications } 184 \text { (2013) 1861-1873 }
$$

Contents lists available at SciVerse ScienceDirect
 Computer Physics Communications

ElaStic: A tool for calculating second-order elastic constants from first principles

Rostam Golesorkhtabar ${ }^{\text {a,b,* }, ~ P a s q u a l e ~ P a v o n e ~}{ }^{\text {a,b, }, ~}$, Jürgen Spitaler ${ }^{\text {a,b }}$, Peter Puschnig ${ }^{\text {a,2 }}$, Claudia Draxl ${ }^{\text {a, }}$,
${ }^{\text {a }}$ Chair of Atomistic Modelling and Design of Materials, Montanuniversität Leoben, Franz-Josef-Straße 18, A-8700 Leoben, Austria
${ }^{\mathrm{b}}$ Materials Center Leoben Forschung GmbH, Roseggerstraße 12, A-8700 Leoben, Austria

ElaStic

Quantum
ESPRESSO

exciting Tutorials

₹ LATTICE OPTIMIZATION：
【b】 Volume optimization for cubic systems
【b】 Simple examples of structure optimization
【b】 General lattice optimization
－ELASTIC PROPERTIES：
【b】Energy vs．strain calculations
【a】 How to calculate the stress tensor
－TOOLS AND PACKAGES

【a】 ElaStic＠exciting：How to calculate elastic constants

The Last Slide: We are still so Excited!

