

Dragful electron-phonon transport -elphbolt a year and a half on

Nakib H. Protik & friends

https://github.com/nakib/elphbolt

Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

https://github.com/nakib/elphbolt

npj Computational Materials 8.1 (2022): 1-9.

Why dragful electron-phonon transport?

Expt: Geballe & Hull, Phys. Rev. 98, 940 (1955)

Theory: npj Computational Materials 8.1 (2022): 1-9.

Why dragful electron-phonon transport?

Coupled electron-phonon Boltzmann transport

Distribution functions

Coupled e-ph BTEs (for homogeneous systems at steady state)

NHP and D. Broido. Phys. Rev. B 101.7 (2020): 075202.

Boltzmann

Decoupled BTEs: Relaxation time approximation (RTA)

out-scattering

out-scattering

Coupled e-ph BTEs: full solution – state of the art

https://github.com/nakib/elphbolt

npj Computational Materials 8.1 (2022): 1-9.

elphbolt v1 workflow

Colossal low T drag in diamond

C. Li, et al. Mat. Tod. Phys. 27, 100740, 2022.

Drag effect in GaN and AIN mobility

Quan et al. Phys. Rev. B. 107, 245202, 2023.

Drag effect in GaN and AIN thermopower

Quan et al. Phys. Rev. B. 107, 245202, 2023.

New features

4ph scattering

- Calculate 4ph scattering rates using FourPhonon on a relatively coarse q-mesh
- Interpolate to ultrafine transport q-mesh in elphbolt
- In-scattering terms of 4ph interaction ignored at the moment
- In future will compute 4ph vertices within elphbolt

Ph-thin-film boundary scattering

- Cross-plane scattering from Fuchs-Sondheimer theory
 - Full expression
 - Ballistic limit
 - No in-scattering correction at the moment

Thermal conductivity in wGaN thin-films

Elhajhasan et al. ArXiv:2306.16980 (2023)

Thermal conductivity in wGaN thin-films

Elhajhasan et al. ArXiv:2306.16980 (2023)

ph-point defect scattering

- Low doping resum -- full Born approximation
- Green's function based
 - Reusable methodology for 1d/2d and el-defect scattering

Beyond Tamura model of ph-isotope scattering in wGaN

- VCA (virtual crystal approximation)
 - All isotopes are substitutions on top of VCA ground state
- DIB (dominant isotope background)
 - Minority isotopes are substitutions on top of majority isotope ground state

Beyond Tamura model of ph-isotope scattering in wGaN

- DIB theory better at high Ts
- Beyond T > 1000 K, ph-iso scattering unimportant

Expt. data from Zheng et al. Phys. Rev. Mat. 3, 014601 (2019)

Phonon-mediated superconductivity – superconda sister app

Topological insulator-superconductor superlattice

$$\alpha^2 F(\omega) \to \frac{\alpha^2 F(\omega)}{|\epsilon_{\sup}(\omega)|^2}$$

0

Kempa et al. Phys. Rev. B. 107, 184518 (2023)

exciting + elphbolt workflow

- Convenient and fast Wannierization in exciting [*]
- DFPT feature
 - phonons
 - electron-phonon coupling (stay tuned...)
- Dragless transport via elphbolt at the moment
- Dragful transport planned for future
- Superconductivity via superconda

exciting + elphbolt interface

exciting Wannier data from Sebastian Tillack & Marten Pretorius

Electron-phonon drag in nanowires and nanoribbons

• Attend Marti's talk!

Acknowledgment

- HU
 - Claudia Draxl
 - Sebastian Tillack
 - Marten Pretorius
 - Marti Raya-Moreno
- U Bremen
 - Gordon Callsen
 - Mahmoud Elhajhasan
 - Wilken Seemann

- ICMAB
 - Riccardo Rurali
- UAB
 - Xavier Cartoixa Soler
- ICN2
 - Pablo Ordejon
 - Miguel Pruneda

- MIT
 - Giuseppe Romano
- HarvardBoris Kozinsky
- BC
 - David Broido
 - Chunhua Li
 - Kris Kempa
 - Michael Naughton

