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Theory classification
in DFT

2

LDA

GGA

hybrids

mGGA

RPA and 
others

Dream of a final theory

ො𝑣𝑥𝑐
ℎ𝑦𝑏

Ψ Ԧ𝑟 = 𝛼 σ𝑛
𝑜𝑐𝑐 Ψ𝑛 Ԧ𝑟 

Ψ𝑛
∗ Ԧ𝑟′ Ψ( Ԧ𝑟′)

| Ԧ𝑟− Ԧ𝑟′|
𝑑3 Ԧ𝑟′ + (1 − 𝛼) 𝑣𝑥

𝐺𝐺𝐴 Ԧ𝑟 + 𝑣𝑐
𝐺𝐺𝐴 Ԧ𝑟

𝑣𝑥𝑐
𝐿𝐷𝐴 Ԧ𝑟 = 𝑣𝑥𝑐(𝜌( Ԧ𝑟))

𝑣𝑥𝑐
𝐺𝐺𝐴 Ԧ𝑟 = 𝑣𝑥𝑐(𝜌( Ԧ𝑟), ∇𝜌( Ԧ𝑟))

𝑣𝑥𝑐
𝑚𝐺𝐺𝐴 Ԧ𝑟 = 𝑣𝑥𝑐(𝜌 Ԧ𝑟 , ∇𝜌 Ԧ𝑟 , ∇2𝜌 Ԧ𝑟 )

Many-body perturbation theory etc.
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Some improvements 
needed in LAPW 

method 



All-electron LAPW basis set
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Interstitial region
(plane-waves)

Muffin-tin
region

Muffin-tin
region

Core orbitals:
𝑢𝑛ℓ 𝑟 𝑌ℓ𝑚( Ƹ𝑟)

LAPW basis set in MT:



ℓ𝑚

(𝐴ℓ𝑚𝑢ℓ 𝑟; 𝜖ℓ + 𝐵ℓ𝑚 ሶ𝑢ℓ(𝑟; 𝜖ℓ))𝑌ℓ𝑚( Ƹ𝑟)

Local orbitals:
(𝑎𝜈𝑢ℓ 𝑟; 𝜖ℓ + 𝑏𝜈 ሶ𝑢ℓ(𝑟; 𝜖ℓ))𝑌ℓ𝑚( Ƹ𝑟)



Workflow in exciting with
local and hybrid functionals
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LDA or GGA Hybrid functionals

A full PBE calculation for initialization

Core wavefunctions

Basis functions

Density and local potentials

H and S matrices and diagonalization

Non-local exchange

Converged?

Postprocessing

Converged?

Initial guess

Core wavefunctions

Density and local potentials

H and S matrices and diagonalization

Basis functions

Converged?

Postprocessing

No No

No
Yes

Yes

Yes



Convergence of HF calculation with respect to 
the size of PBE LAPW+lo basis set
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𝜇Ha precision

BeHe

𝜇Ha precision



Convergence of HF calculation with respect to 
the size of PBE LAPW+lo basis set
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𝜇Ha precision

BeHe

Why do we need 𝜇Ha precision?
• LAPW is a gold standard method – it can produce benchmark data.
• To validate method and implementation.

𝜇Ha precision



Radial solver for basis functions
point by point (𝑢𝑖→ 𝑢𝑖+1) outwards integration
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𝑟𝑢𝑁𝑢𝑁−1𝑢1𝑢2 𝑢3 𝑢4 ...

−
1

2

𝑑2

𝑑𝑟2 𝑢 𝑟 +
𝑙 𝑙 + 1

2𝑟2 𝑢(𝑟) + 𝑣L 𝑟 𝑢 𝑟 = 𝜀𝑢 𝑟 𝑢(𝑟) = 𝜓(𝑟)𝑟

• First point initial value 𝑢1 = 𝑟1
ℓ+1

• Solve ODE point by point (𝑢𝑖→ 𝑢𝑖+1)
(by splitting 2-nd order dif. eq. in two coupled 1-st. order dif. eq.)



Radial solver for basis functions
point by point (𝑢𝑖→ 𝑢𝑖+1) outwards integration
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𝑟𝑢𝑁𝑢𝑁−1𝑢1𝑢2 𝑢3 𝑢4 ...

−
1

2

𝑑2

𝑑𝑟2 𝑢 𝑟 +
𝑙 𝑙 + 1

2𝑟2 𝑢(𝑟) + 𝑣L 𝑟 𝑢 𝑟 = 𝜀𝑢 𝑟 𝑢(𝑟) = 𝜓(𝑟)𝑟

• First point initial value 𝑢1 = 𝑟1
ℓ+1

• Solve ODE point by point (𝑢𝑖→ 𝑢𝑖+1)
(by splitting 2-nd order dif. eq. in two coupled 1-st. order dif. eq.)

We don’t have this function yet.

−
1

2

𝑑2

𝑑𝑟2 𝑢 𝑟 +
𝑙 𝑙 + 1

2𝑟2 𝑢 𝑟 + 𝑣L 𝑟 𝑢 𝑟 + ො𝑣𝑥
𝑁𝐿𝑢(𝑟) = 𝜀𝑢 𝑟

−
1

2

𝑑2

𝑑𝑟2 𝑢(𝑖) 𝑟 +
𝑙 𝑙 + 1

2𝑟2 𝑢(𝑖) 𝑟 + 𝑣L 𝑟 𝑢(𝑖) 𝑟 + ො𝑣 𝑥
𝑁𝐿𝑢(𝑖−1)(𝑟) = 𝜀𝑢(𝑖) 𝑟



Exact exchange in radial solver
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ො𝑣𝑥
𝐻𝐹Φ Ԧ𝑟 = 

𝑛ℓ

𝑐𝑜𝑟𝑒

𝑓𝑛ℓΨ𝑛ℓ Ԧ𝑟 න
Ψ𝑛ℓ

∗ Ԧ𝑟′ Φ Ԧ𝑟′

Ԧ𝑟 − Ԧ𝑟′ 𝑑 Ԧ𝑟′ + 
𝜁ℓ𝑚

𝜁′ℓ′𝑚′

𝑣𝑎𝑙𝑒𝑛𝑐𝑒

𝑃𝜁ℓ𝑚,𝜁′ℓ′𝑚′ u𝜁ℓ 𝑟 𝑌ℓ𝑚( Ƹ𝑟) න
u𝜁′ℓ′

∗ 𝑟′ 𝑌ℓ′𝑚′( Ƹ𝑟′)Φ Ԧ𝑟′

Ԧ𝑟 − Ԧ𝑟′ 𝑑 Ԧ𝑟′

Interaction with core electrons Interaction with valence electrons in the MT

Basis functionsDensity matrix 
elements

Core orbitalsOccupation
number



Workflow in exciting with hybrid functionals
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Hybrid functionals

A full GGA-PBE calculation for initialization

Core wavefunctions

Basis functions (outwards integration)   

Density and local potentials

H and S matrices and diagonalization

Non-local exchange

Converged?

Postprocessing

Converged?

No

No

Yes

Yes



𝜓
𝑟

𝑟/𝑎𝑜

too low ε

too high ε

best ε

−
1

2

𝑑2

𝑑𝑟2 𝑢(𝑖) 𝑟 +
𝑙 𝑙 + 1

2𝑟2 𝑢(𝑖) 𝑟 + 𝑣L 𝑟 𝑢(𝑖) 𝑟 + ො𝑣𝑥
𝑁𝐿𝑢(𝑖−1)(𝑟) = 𝜀𝑢(𝑖) 𝑟

Radial solver for core orbitals
point by point (𝑢𝑖→ 𝑢𝑖+1) outwards integration



Problem!

𝜓
𝑟

𝑟/𝑎𝑜

too low ε

too high ε

best ε

−
1

2

𝑑2

𝑑𝑟2 𝑢(𝑖) 𝑟 +
𝑙 𝑙 + 1

2𝑟2 𝑢(𝑖) 𝑟 + 𝑣L 𝑟 𝑢(𝑖) 𝑟 + ො𝑣𝑥
𝑁𝐿𝑢(𝑖−1)(𝑟) = 𝜀𝑢(𝑖) 𝑟

Radial solver for core orbitals
point by point (𝑢𝑖→ 𝑢𝑖+1) outwards integration



Radial solver - integral equation approach
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−
1

2
∇2Ψnl𝑚 Ԧ𝑟 + ො𝑣Ψnl𝑚 Ԧ𝑟 = 𝜀Ψ𝑛𝑙𝑚 Ԧ𝑟

(∇2+2𝜀)Ψ𝑛𝑙𝑚 Ԧ𝑟 = 2 ො𝑣Ψ𝑛𝑙𝑚 Ԧ𝑟



Radial solver - integral equation approach
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−
1

2
∇2Ψnl𝑚 Ԧ𝑟 + ො𝑣Ψnl𝑚 Ԧ𝑟 = 𝜀Ψ𝑛𝑙𝑚 Ԧ𝑟

(∇2+2𝜀)Ψ𝑛𝑙𝑚
(𝑖)

Ԧ𝑟 = 2 ො𝑣Ψ𝑛𝑙𝑚
(𝑖−1)

Ԧ𝑟
Screened 

Poisson eq.



Radial solver - integral equation approach
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−
1

2
∇2Ψnl𝑚 Ԧ𝑟 + ො𝑣Ψnl𝑚 Ԧ𝑟 = 𝜀Ψ𝑛𝑙𝑚 Ԧ𝑟

(∇2+2𝜀)Ψ𝑛𝑙𝑚
(𝑖)

Ԧ𝑟 = 2 ො𝑣Ψnlm
i−1

Ԧ𝑟

Ψ𝑛𝑙𝑚
(i)

Ԧ𝑟 = 2 න

0

∞

𝑑3𝑟′ 𝐺 Ԧ𝑟, Ԧ𝑟′ ො𝑣Ψnlm
i−1

Ԧ𝑟′

Screened 
Poisson eq.

Green’s function 
method



Radial solver - integral equation approach
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−
1

2
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0

∞

𝑑3𝑟′ 𝐺 Ԧ𝑟, Ԧ𝑟′ ො𝑣Ψnlm
i−1

Ԧ𝑟′

𝐺 Ԧ𝑟, Ԧ𝑟′ =
𝑒−𝜆| Ԧ𝑟− Ԧ𝑟′|

| Ԧ𝑟 − Ԧ𝑟′|
= 4𝜋𝜆 

𝑙=0

∞



𝑚=−𝑙

𝑙

𝑖𝑙 𝜆𝑟< 𝑘𝑙 𝜆𝑟> 𝑌𝑙𝑚
∗ Ƹ𝑟 𝑌𝑙𝑚( Ƹ𝑟′)

Modified Spherical Bessel Functions

Screened 
Poisson eq.

Green’s function 
method



Radial solver - integral equation approach
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𝑚=−𝑙

𝑙
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Modified Spherical Bessel Functions
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Screened 
Poisson eq.

Green’s function 
method



Radial solver via integral equation approach
A stand-alone atomic solver for closed shell atoms.
o Can solve Kohn-Sham equation for atoms with spherically symmetric density - closed shell 

or open shell with predefined fractional occupation numbers.

o Supports spin-polarized systems (calculations with separated spin channels).

o Up to 14-digit precision for the total energy in Hartee-Fock case.

o Interface with libxc (local LDA and GGA functionals).

o Hybrid exchange-correlation functionals and range-separated hybrids (erf kernel).

o Supports non-relativistic [1] and scalar-relativistic Hamiltonians within the zero-order 
regular approximation (ZORA).

o Point and Gaussian charge distribution model of nucleus.

o A verification tool for other DFT codes.

[1] J. Užulis and A. Gulans, Journal of Physics Communications 6, 085002 (2022);

https://github.com/gulans/atom-HF



Workflow in exciting with hybrid functionals
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Hybrid functionals

A full GGA-PBE calculation for initialization

Core wavefunctions* (Radial solver via integral equation approach)

Basis functions* (outwards integration)   

Density and local potentials

H and S matrices and diagonalization

Non-local exchange

Converged?

Postprocessing

Converged?

No

No

Yes

Yes

* - not included in 
latest exciting neon 
version.



Basis functions with non-local exchange

Total energy deviation from exact HF total energies with PBE and HF core orbitals and different types 
of  LAPW+lo basis set.

21

MT=2.0 𝑎0 MT=1.5 𝑎0

Core type PBE HF HF HF HF

Radial basis type PBE PBE HF HF + 1lo HF + 1lo

Atom Δ𝐸, 𝜇Ha Δ𝐸, 𝜇Ha Δ𝐸, 𝜇Ha Δ𝐸, 𝜇Ha Δ𝐸, 𝜇Ha

He 527 527 0 0 0

Be 706 706 0 0 0

Ne 3999 177 4 12

Ar -1425 40 39 2

Kr 8869 23 8 20

Xe -92 4 2 34
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Summary
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• The integral equation approach is a highly precise method for solving the radial problem with 
hybrid functionals. We apply it in exciting for calculating core orbitals.

• We extend the existing outward integration radial solver in exciting to generate radial basis 
functions  compatible with hybrid functionals.

• We combine both ingredients to be able to calculate meaningful Hartree-Fock energies (the 
same Hamiltonian applied everywhere and no double-counting errors). 

• The Hartree-Fock total energies can be converged systematically with the errors within a few 
μHa.

• The correct core state eigenvalues allows to use hybrid calculations in a core electron 
spectroscopy.
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