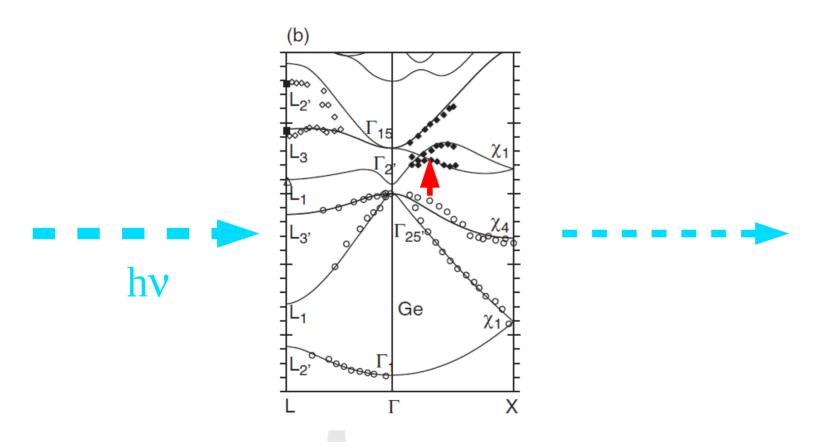
Lucia Reining (using also material of Francesco Sottile)

Palaiseau Theoretical Spectroscopy Group & Friends

- \rightarrow From linear response TDDFT to TD-GFT
- \rightarrow Approximations to the BSE
- \rightarrow BSE in practice
- \rightarrow Examples and notes

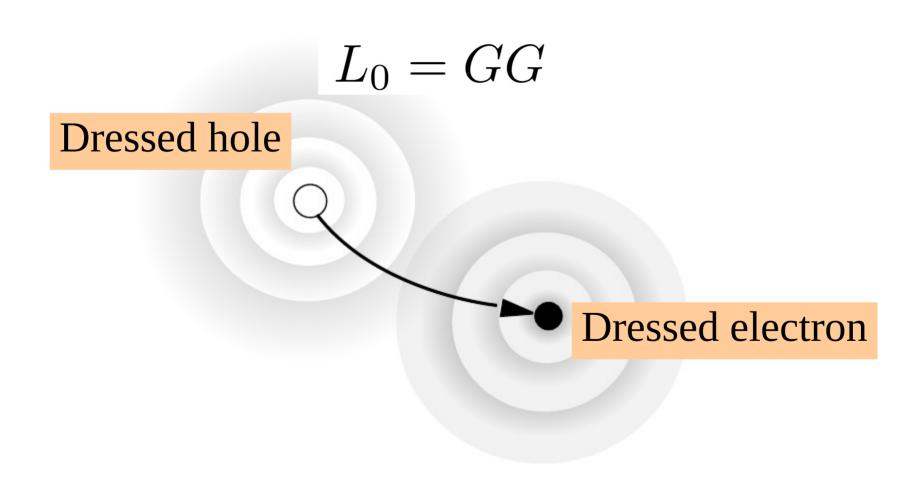
- \rightarrow From linear response TDDFT to TD-GFT
- \rightarrow Approximations to the BSE
- \rightarrow BSE in practice
- \rightarrow Examples and notes

Absorption: measuring electron-hole pairs \rightarrow 2-body GF



$$\left(-\frac{\nabla^2}{2} + v_{\text{ext}}(\mathbf{r}) + v_H(\mathbf{r}) + v_{\text{xc}}(\mathbf{r})\right)\varphi_i(\mathbf{r}) = \varepsilon_i\varphi_i(\mathbf{r})$$

$$\left(-\frac{\nabla^2}{2} + v_{\text{ext}}(\mathbf{r}) + v_H(\mathbf{r})\right)\varphi_i(\mathbf{r};\omega) + \int d\mathbf{r}' \,\Sigma_{\text{xc}}(\mathbf{r},\mathbf{r}';\omega)\varphi_i(\mathbf{r}';\omega) = \varepsilon_i(\omega)\varphi_i(\mathbf{r};\omega)$$

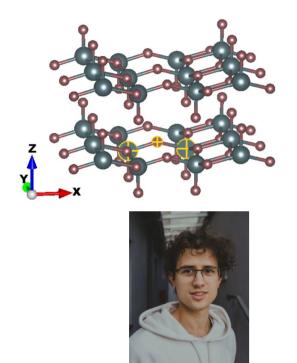


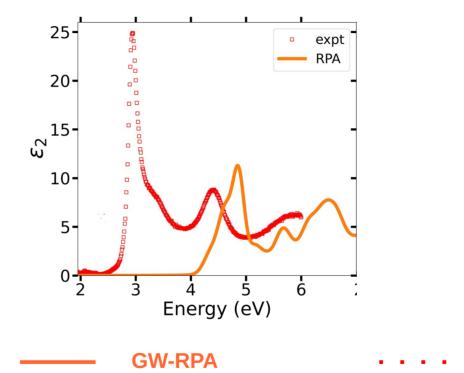
Optical absorption in the aux. system of electrons and holes (indep.)

Chaire Énergies Durables École polytechnique - EDF

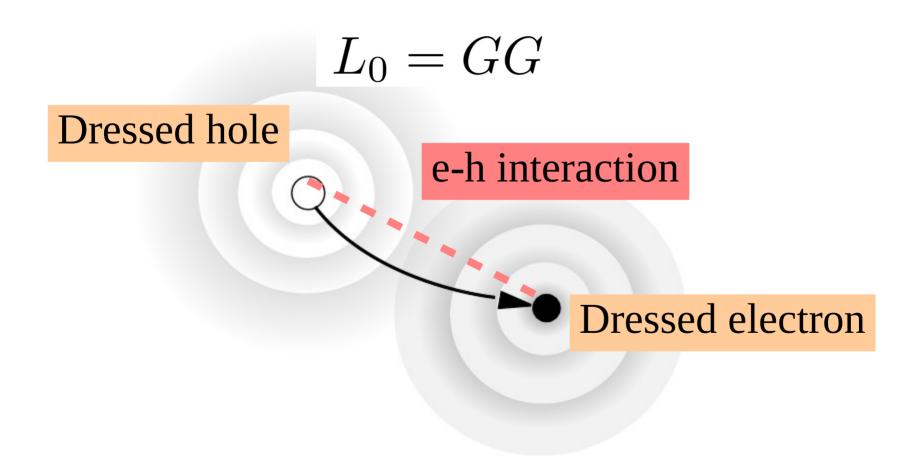
Exp

V₂O₅: a layered bulk material





Vitaly Gorelov Reining, Feneberg, Goldhahn, Schleife, Lambrecht, Gatti *npj comp mat (2022)*



$$\chi = \frac{\delta n}{\delta v_{\text{ext}}} = \frac{\delta n}{\delta v_{\text{tot}}} \frac{(\delta v_{\text{ext}} + \delta v_{\text{H}} + \delta v_{\text{xc}})}{\delta v_{\text{ext}}}$$
$$\chi = \chi^{0} + \left(\frac{\delta v_{\text{H}} + \delta v_{\text{xc}}}{\delta n}\right) \frac{\delta n}{\delta v_{\text{ext}}} = \chi^{0} + \chi^{0} (v_{c} + f_{\text{xc}}) \chi$$

$$\chi = \frac{\delta n}{\delta v_{\text{ext}}} = \frac{\delta n}{\delta v_{\text{tot}}} \frac{(\delta v_{\text{ext}} + \delta v_{\text{H}} + \delta v_{\text{xc}})}{\delta v_{\text{ext}}}$$
$$\chi = \chi^{0} + \left(\frac{\delta v_{\text{H}} + \delta v_{\text{xc}}}{\delta n}\right) \frac{\delta n}{\delta v_{\text{ext}}} = \chi^{0} + \chi^{0} (v_{c} + f_{\text{xc}}) \chi$$
$$\chi = \frac{\delta n}{\delta v_{\text{ext}}} = \frac{\delta n}{\delta v_{\text{tot}}} \frac{(\delta v_{\text{ext}} + \delta v_{\text{H}} + \delta \Sigma_{\text{xc}})}{\delta n} \frac{\delta n}{\delta v_{\text{ext}}}$$

$$\chi = \frac{\delta n}{\delta v_{\text{ext}}} = \frac{\delta n}{\delta v_{\text{tot}}} \frac{(\delta v_{\text{ext}} + \delta v_{\text{H}} + \delta v_{\text{xc}})}{\delta v_{\text{ext}}}$$
$$\chi = \chi^{0} + \left(\frac{\delta v_{\text{H}} + \delta v_{\text{xc}}}{\delta n}\right) \frac{\delta n}{\delta v_{\text{ext}}} = \chi^{0} + \chi^{0} (v_{c} + f_{\text{xc}}) \chi$$
$$\chi = \frac{\delta n}{\delta v_{\text{ext}}} = \frac{\delta n}{\delta v_{\text{tot}}} \frac{(\delta v_{\text{ext}} + \delta v_{\text{H}} + \delta \Sigma_{\text{xc}})}{\delta n} \frac{\delta n}{\delta v_{\text{ext}}}$$
$$L = \frac{\delta G}{\delta v_{\text{ext}}} = \frac{\delta G}{\delta v_{\text{tot}}} \frac{(\delta v_{\text{ext}} + \delta v_{\text{H}} + \delta \Sigma_{\text{xc}})}{\delta G} \frac{\delta G}{\delta v_{\text{ext}}}$$
$$L_{0} \equiv GG$$

$$\chi = \frac{\delta n}{\delta v_{\text{ext}}} = \frac{\delta n}{\delta v_{\text{tot}}} \frac{(\delta v_{\text{ext}} + \delta v_{\text{xc}})}{\delta v_{\text{ext}}}$$

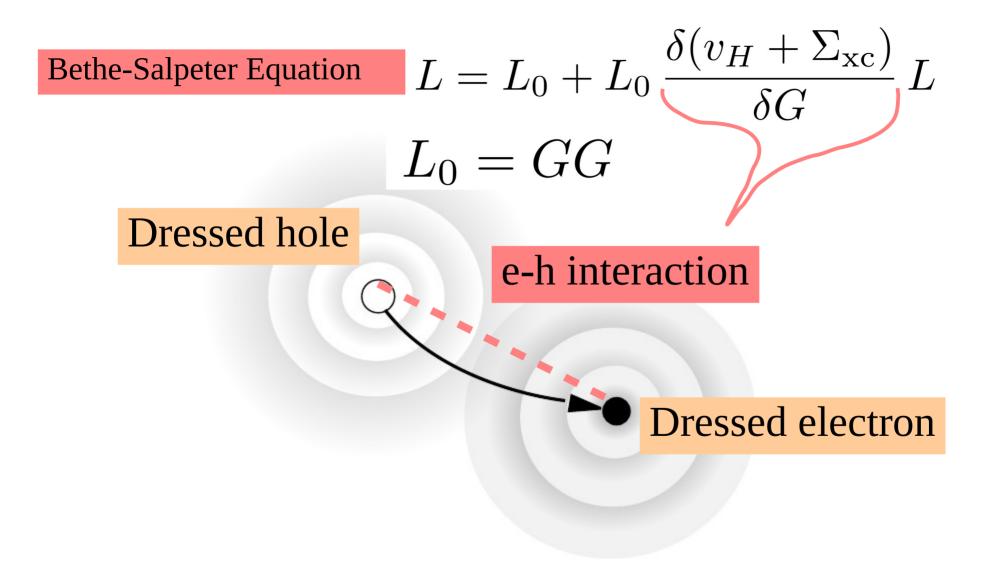
$$\chi = \chi^{0} + \left(\frac{\delta v_{\text{H}} + \delta v_{\text{xc}}}{\delta n}\right) \frac{\delta n}{\delta v_{\text{ext}}} = \chi^{0} + \chi^{0} (v_{c} + f_{\text{xc}}) \chi$$

$$\chi = \frac{\delta n}{\delta v_{\text{ext}}} = \frac{\delta n}{\delta v_{\text{tot}}} \frac{(\delta v_{\text{ext}} + \delta v_{\text{H}} + \delta \Sigma_{\text{xc}})}{\delta n} \frac{\delta n}{\delta v_{\text{ext}}}$$

$$L = \frac{\delta G}{\delta v_{\text{ext}}} = \frac{\delta G}{\delta v_{\text{tot}}} \frac{(\delta v_{\text{ext}} + \delta v_{\text{H}} + \delta \Sigma_{\text{xc}})}{\delta G} \frac{\delta G}{\delta v_{\text{ext}}}$$

$$L_{0} \equiv GG$$

$$L = L_{0} + L_{0} \left(-iv_{c} + \frac{\delta \Sigma_{\text{xc}}}{\delta G} \right) L \quad \text{BSE}$$



$$L(1234) = L^{0}(1234) + L^{0}(1256) \left[v(57)\delta(56)\delta(78) + \frac{\delta\Sigma(56)}{\delta G(78)} \right] L(7834)$$

Comparison with Linear Response quantities

$$\chi(12) = \frac{\delta n(1)}{\delta V_{ext}(2)}$$

$$L(1234) = \frac{\delta G(12)}{\delta \tilde{V}_{ext}(34)}$$

Comparison with Linear Response quantities

$$\chi(12) = \frac{\delta n(1)}{\delta V_{ext}(2)}$$
$$L(1133) = \frac{\delta G(11)}{\delta \tilde{V}_{ext}(33)}$$

Comparison with Linear Response quantities

$$\chi(12) = \frac{\delta n(1)}{\delta V_{ext}(2)}$$

$$-i L(1133) = \frac{\delta n(1)}{\delta V_{ext}(3)}$$

$$n(\mathbf{r},t) = -iG(\mathbf{r},\mathbf{r},t,t^+)$$

Comparison with Linear Response quantities

$$\chi(12) = \frac{\delta n(1)}{\delta V_{ext}(2)}$$

$$-i L(1133) = \frac{\delta n(1)}{\delta V_{ext}(3)}$$

$$L(1234) = L^{0}(1234) + L^{0}(1256) \left[v(57)\delta(56)\delta(78) + \frac{\delta\Sigma(56)}{\delta G(78)} \right] L(7834)$$

Comparison with Linear Response quantities

$$\chi(12) = \frac{\delta n(1)}{\delta V_{ext}(2)}$$
Have to solve 4 point equation, then take a part!

Bethe-Salpeter Equation

$$L(1234) = L^{0}(1234) + L^{0}(1256) \left[v(57)\delta(56)\delta(78) + \frac{\delta\Sigma(56)}{\delta G(78)} \right] L(7834)$$

We have the (4-point) Bethe-Salpeter equation. And now ?

→ From linear response TDDFT to TD-GFT

- \rightarrow Approximations to the BSE
- \rightarrow BSE in practice
- \rightarrow Examples and notes

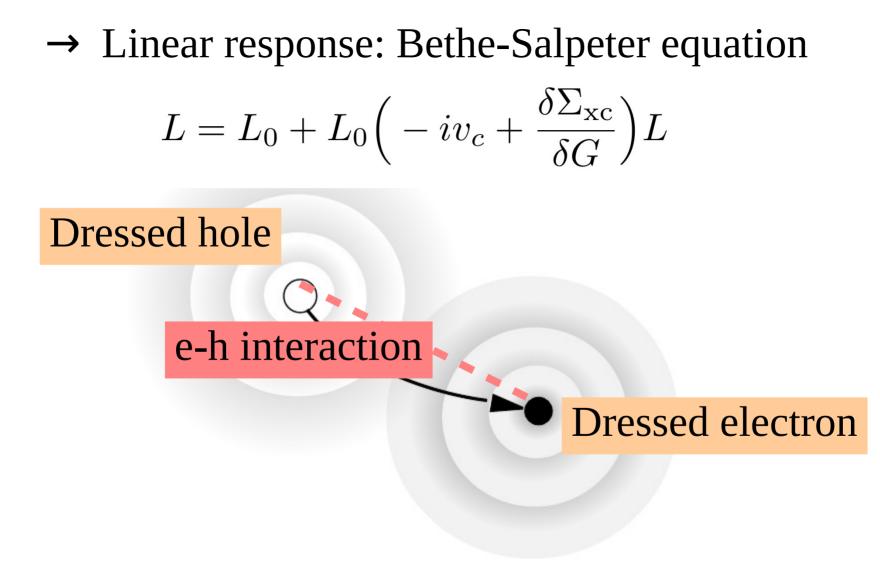
Approximations

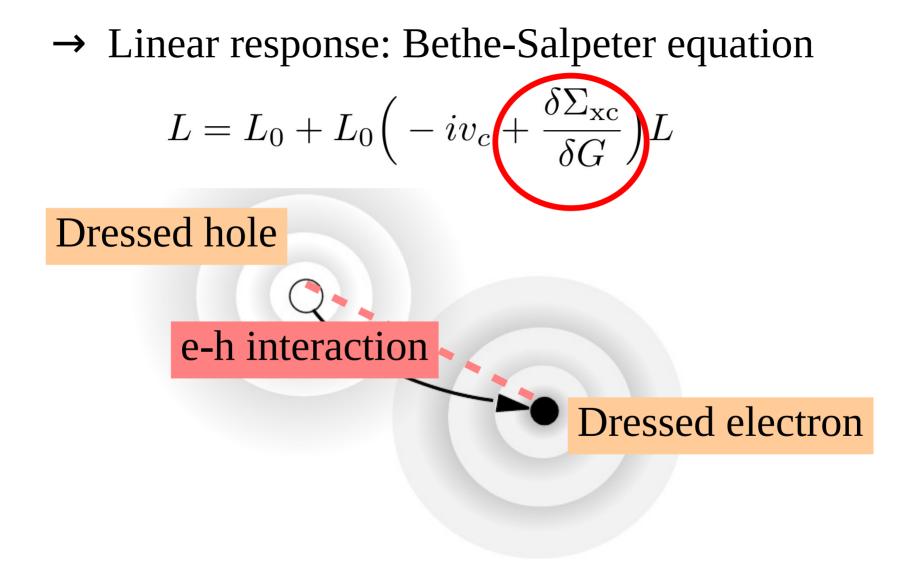
First point: Choosing
$$\Sigma$$

 $L(1234) = L^0(1234) + L^0(1256) \left[v(57)\delta(56)\delta(78) + \frac{\delta\Sigma(56)}{\delta G(78)} \right] L(7834)$

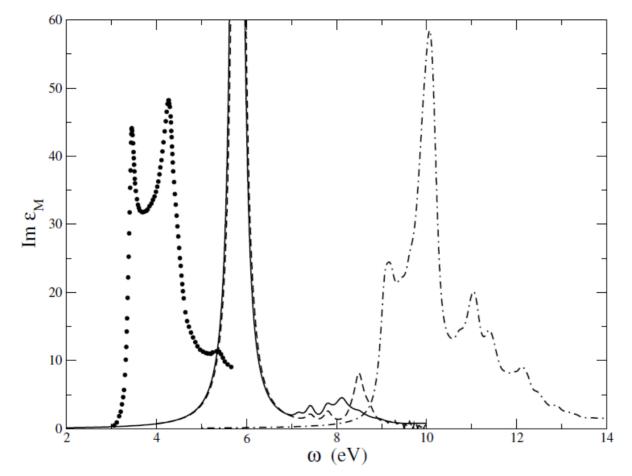
Hartree-Fock:
$$\Sigma_{\mathbf{x}}(1,2) = iG(1,2)v_c(2,1^+)$$

 $n(\mathbf{r},t) = -iG(\mathbf{r},\mathbf{r},t,t^+)$
 $\rho(\mathbf{r},\mathbf{r}') = -iG(\mathbf{r},t,\mathbf{r}',t^+)$





Silicon: TD-HF



Bruneval, Sottile, Olevano, Reining, J. Chem. Phys. 124, 144113 (2006)

Approximations

First point: Choosing Σ

$$L(1234) = L^{0}(1234) + L^{0}(1256) \left[v(57)\delta(56)\delta(78) + \frac{\delta\Sigma(56)}{\delta G(78)} \right] L(7834)$$

Screened Coulomb term

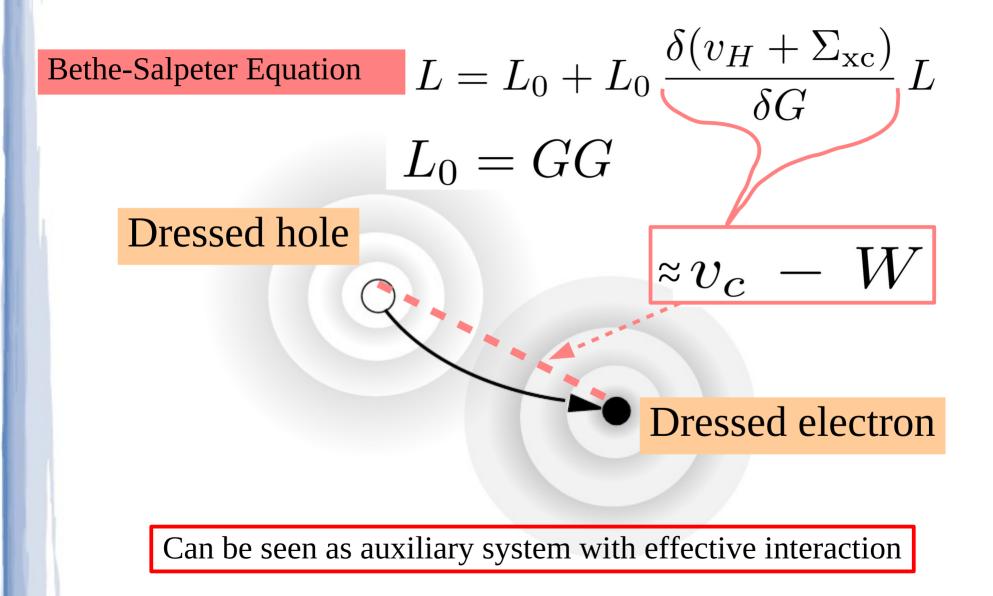
$$\Sigma^{\rm GW}(1,2) = iG(12)W(21)$$

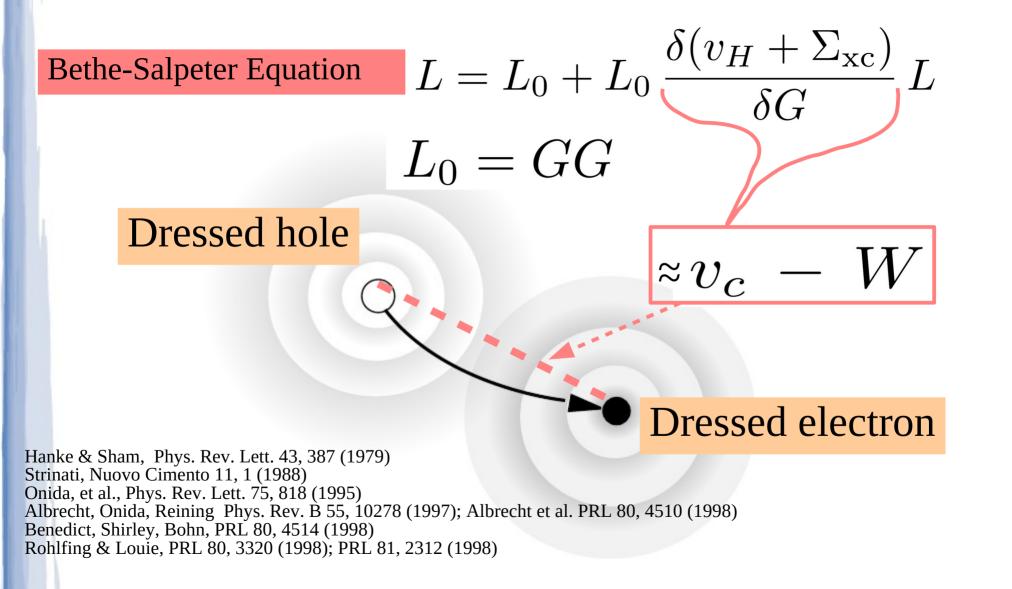
⇒ Standard Bethe-Salpeter equation (Time-Dependent Screened Hartree-Fock)

$$L = GG + GG [v - W] L$$

$$\Rightarrow \text{Approx.} \ \frac{\delta W}{\delta G} = 0$$

W instantaneous → static





- → From linear response TDDFT to TD-GFT
- \rightarrow Approximations to the BSE

 \rightarrow BSE in practice

 \rightarrow Examples and notes

In practice (for electron-hole BSE)

$$L(1234,\omega) = L^{0}(1234,\omega) + L^{0}(1256,\omega)K(5678)L(7834,\omega)$$

$$L_{(n_1n_2)}^{(n_3n_4)}(\omega) = L_{(n_1n_2)}^{0(n_3n_4)}(\omega) + L_{(n_1n_2)}^{0(n_5n_6)}(\omega) K_{(n_5n_6)}^{(n_7n_8)} L_{(n_7n_8)}^{(n_3n_4)}(\omega)$$

We work in transition space...

$$L(1234,\omega) \Rightarrow L_{(n_1n_2)}^{(n_3n_4)}(\omega) =$$

= $\int d(1234)L(1234,\omega)\phi_{n_1}(1)\phi_{n_2}^*(2)\phi_{n_3}(3)\phi_{n_4}^*(4) = \ll L \gg$

Clever choice of the basis ϕ_n

Mixing of transitions

The Excitonic Hamiltonian

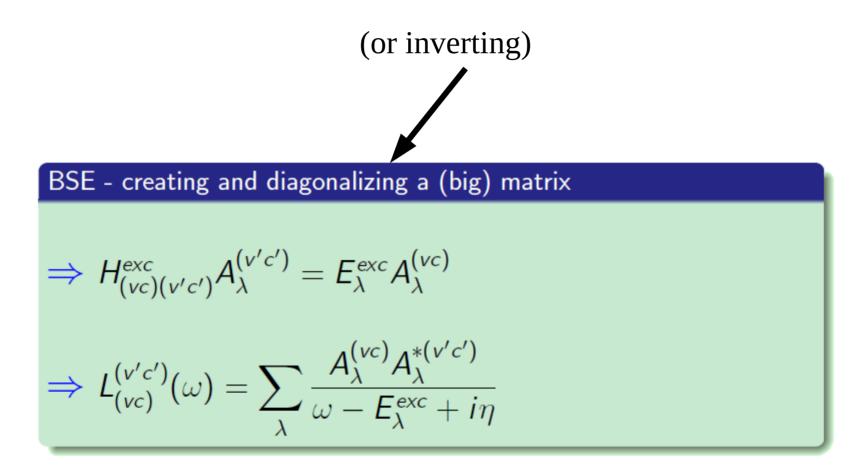
$$L_{(n_1n_2)}^{(n_3n_4)}(\omega) = [(E_{n_2} - E_{n_1} - \omega)\delta_{n_1n_3}\delta_{n_2n_4} + \ll v \gg - \ll W \gg]^{-1}$$

$$L_{(n_{1}n_{2})}^{(n_{3}n_{4})}(\omega) = \frac{1}{H^{exc} - \omega}$$
$$H^{exc} = (E_{n_{2}} - E_{n_{1}})\delta_{n_{1}n_{3}}\delta_{n_{2}n_{4}} + \ll v \gg - \ll W \gg$$

Resonant vs Coupling

 $n_1, n_2, n_3, n_4 = v, c$ (**k**)

$$H^{reso} = (E_c - E_v) \delta_{vv'} \delta_{cc'} + \ll v \gg - \ll W \gg$$



$$Abs^{BSE}(\omega) = Im \langle L(\omega) \rangle = \sum_{\lambda} \left| \sum_{vc} A_{\lambda}^{(vc)} \langle c|D|v \rangle \right|^{2} \delta(\omega - E_{\lambda}^{exc})$$
$$Abs^{IP-RPA}(\omega) = Im \langle \chi^{0}(\omega) \rangle = \sum_{vc} |\langle c|D|v \rangle|^{2} \delta(\omega - (\epsilon_{c} - \epsilon_{v}))$$

BSE in practice

Standard Approximations for BSE

- Ground-state
 - pseudopotential
 - V_{xc} local density approximation
- Quasi-particle Many-Body Theory
 - GW approximation for $\boldsymbol{\Sigma}$
 - W rpa, plasmon-pole model
 - $\psi_{\text{GW}} = \phi_{\text{KS}}$
- Bethe-Salpeter equation

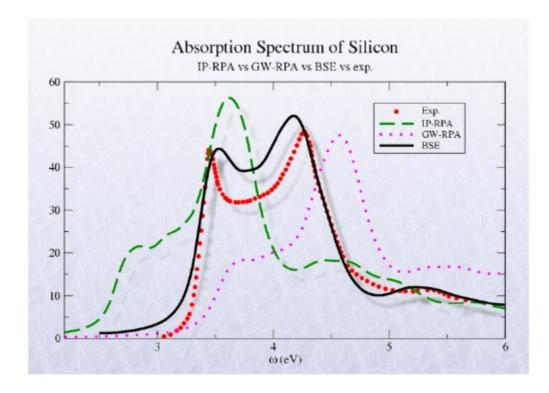
$$\frac{\delta W}{=}$$

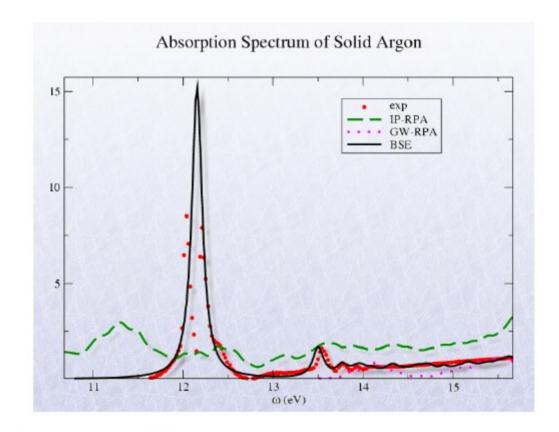
$$\delta G$$

- W rpa, static
- only resonant term

- → From linear response TDDFT to TD-GFT
- \rightarrow Approximations to the BSE
- \rightarrow BSE in practice

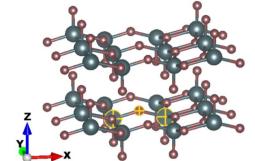
 \rightarrow Examples and notes

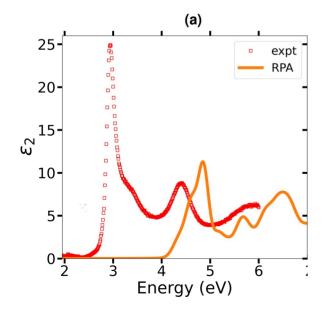


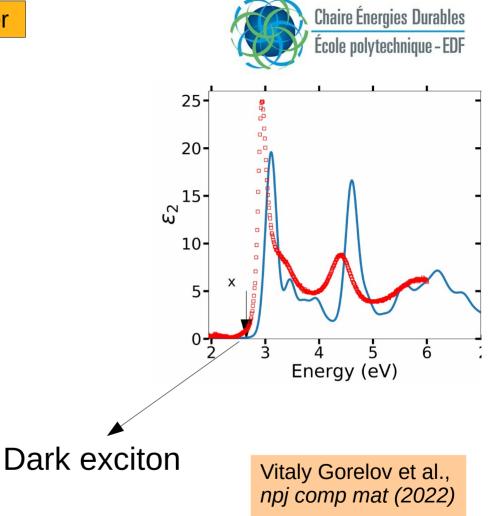


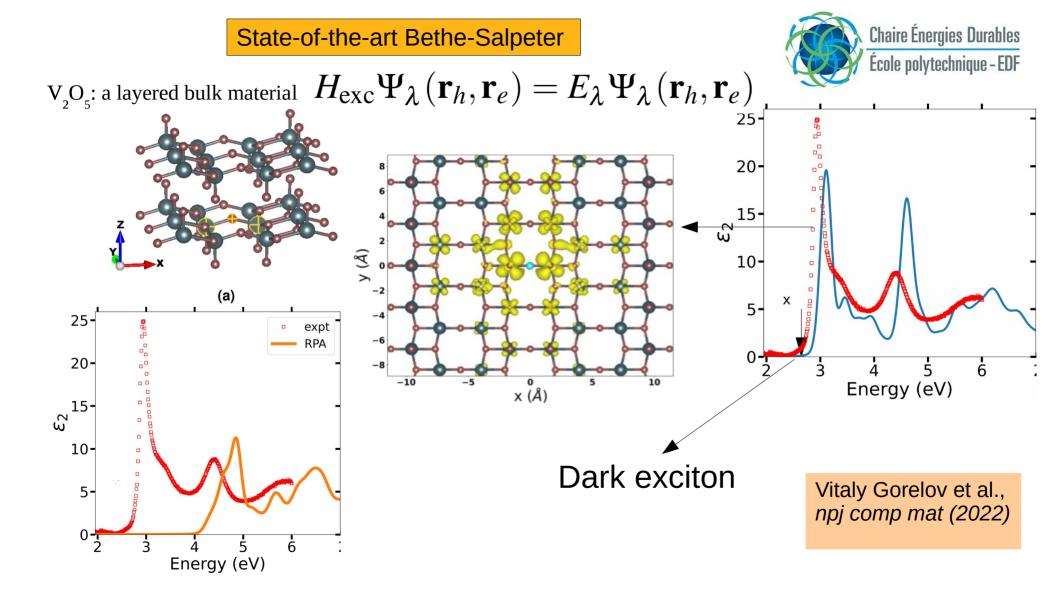
Sottile, Marsili, et al., PRB (2007).

State-of-the-art Bethe-Salpeter

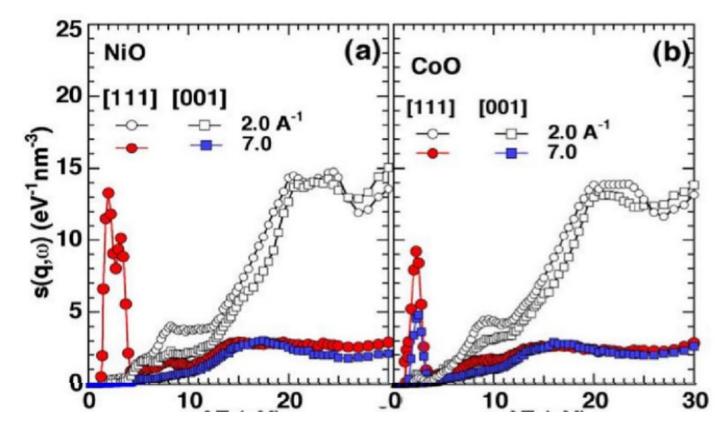






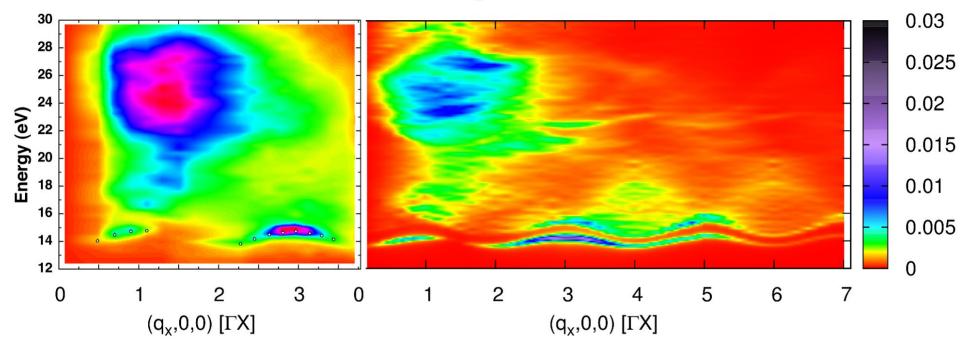


Excitons are important also at q different from 0!



Larson et al., Phys. Rev. Lett. 99:026401, 2007

Exciton dispersion in LiF



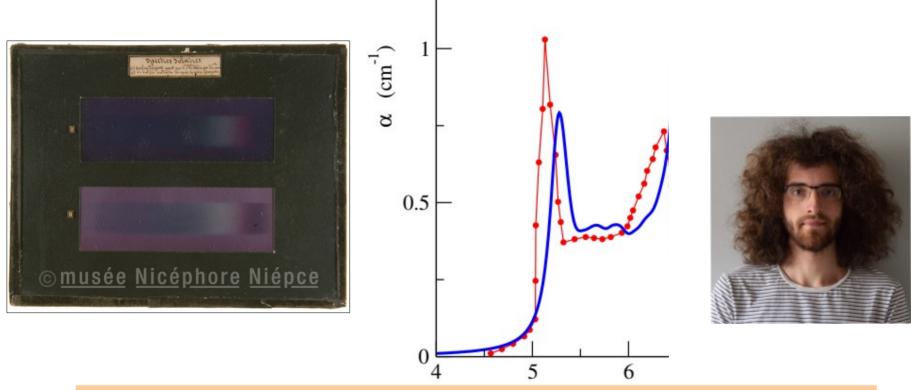
M. Gatti and F. Sottile, Phys. Rev. B 88, 155113 *Exp. P. Abbamonte et al., Proc. Natl. Acad. Sci. USA* 105, 12159 (2008).

$$n(\mathbf{r},t) = \int d\mathbf{r}' dt' \,\chi(\mathbf{r},\mathbf{r}',t-t') v_{\text{ext}}(\mathbf{r}',t')$$

Full microscopic response needed for charge dynamics

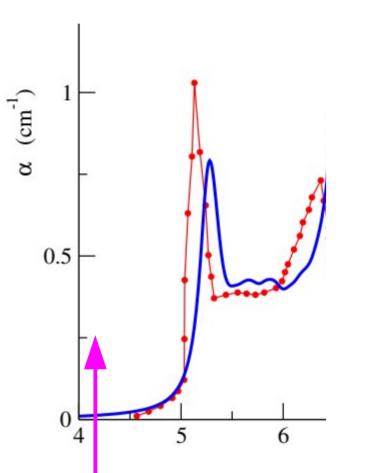
Igor Reshetnyak, Matteo Gatti, Francesco Sottile, and Lucia Reining, Phys. Rev. Research 1, 032010(R) (2019)

Use this to study charge dynamics in silver chloride, AgCl



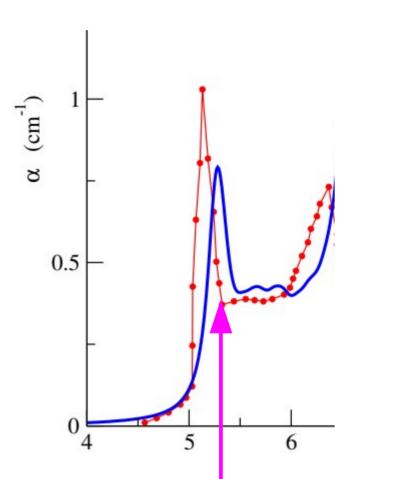
Arnaud Lorin, Matteo Gatti, Lucia Reining, Francesco Sottile, PRB

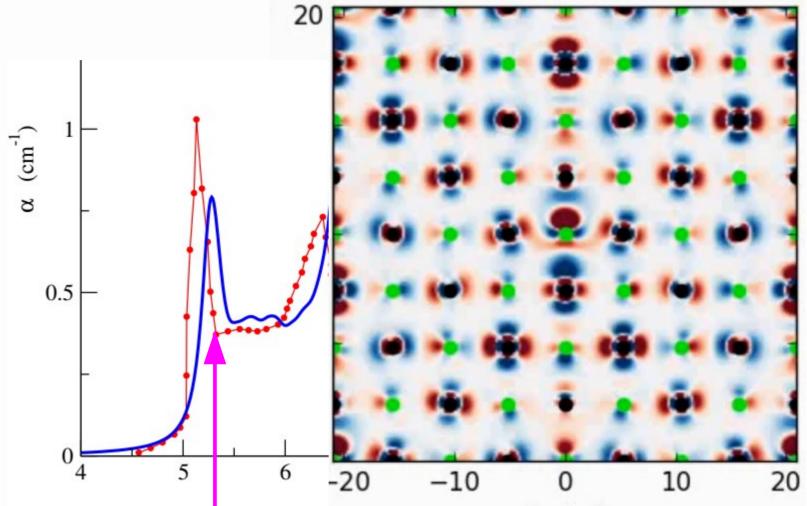
Exp: M. Yanagihara, Y. Kondo, H. Kanzaki, J. Phys. Soc. Jpn. 52, 4397 (1983)





Frequency on exciton:

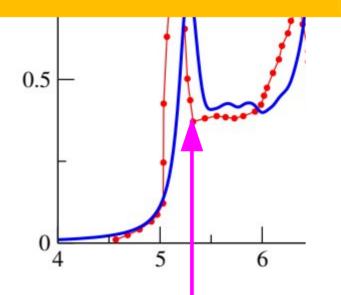


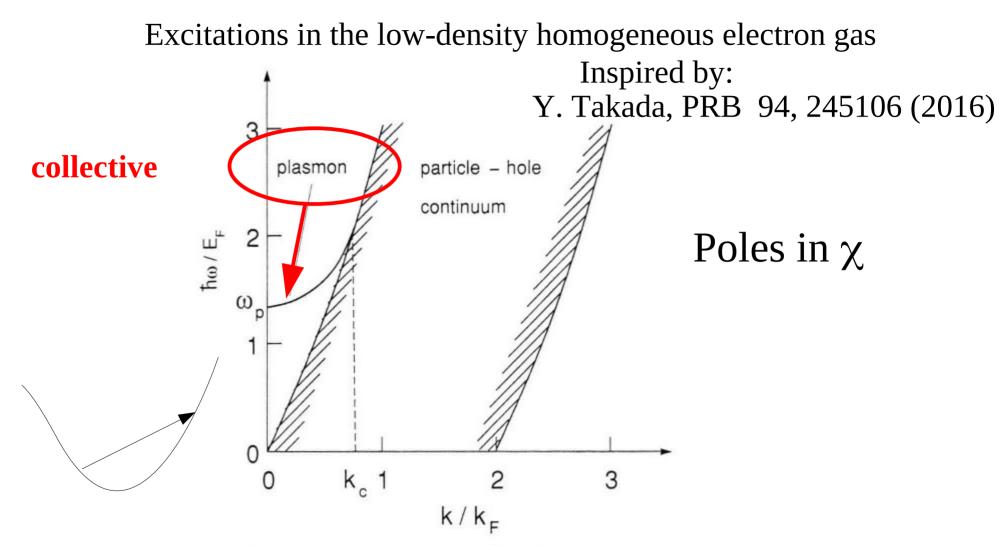


- - -

Frequency on exciton:

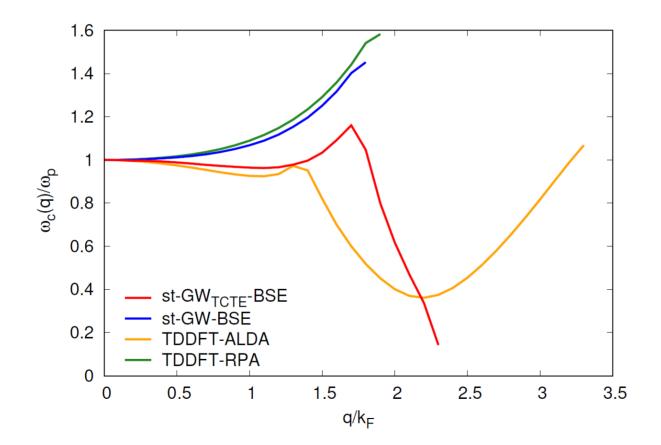
→ More than beautiful pictures: Charge dynamics for photovoltaics, photocatalysis & more





from K. Sturm, "Dynamic Structure Factor: an Introduction", Zeitschrift für Naturforschung A (1993)

Collective modes: $\operatorname{Re} \epsilon(q, \omega_c(q)) = 0$



Koskelo, Reining, Gatti https://doi.org/10.48550/arXiv.2301.00474

The Bethe-Salpeter Equation

→ From linear response TDDFT to TD-GFT *To tell the truth, very similar!*

→ Approximations to the BSE *Mostly GW-derived and instantaneous*

 \rightarrow BSE in practice Mostly in form of e-h hamiltonian

→ Examples: optical and loss spectra, full response, *meets limits when short distance & time physics*

Suggested Reading

Strinati, G., "Application of the Green's function method to the study of the optical-properties of semiconductors," Rivista del Nuovo Cimento 11, 1, 1988. *Pedagogical review of the theoretical framework underlying today's Bethe–Salpeter calculations. Derivation of the main equations and link to spectroscopy.*

Rohlfing & Louie, "Electron-hole excitations and optical spectra from first principles", Phys. Rev. B 62, 4927 (2000). *Good overview of BSE in practice as we still mostly do it today*.

Onida, G., Reining, L., and Rubio, A., "Electronic excitations: density-functional versus many-body Greens-function approaches," Rev. Mod. Phys. 74, 601, 2002. *Review of ab initio calculations of electronic excitations with accent on optical properties and a comparison between Bethe–Salpeter and TDDFT*

R.M. Martin, L. Reining, D.M. Ceperley, "Interacting Electrons: Theory and Computational Approaches, Cambridge May 2016 *Quite recent book containing many-body perturbation theory, DMFT and QMC*